Instability of all regular stationary solutions to reaction-diffusion-ODE systems
A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary so...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
28 Oct 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-20 |
| DOI: | 10.48550/arXiv.2105.05023 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2105.05023 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2105.05023 |
| Verfasserangaben: | Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, and Kanako Suzuki |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817336851 | ||
| 003 | DE-627 | ||
| 005 | 20230118161746.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220923s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2105.05023 |2 doi | |
| 035 | |a (DE-627)1817336851 | ||
| 035 | |a (DE-599)KXP1817336851 | ||
| 035 | |a (OCoLC)1361714256 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Cygan, Szymon |e VerfasserIn |0 (DE-588)1268443352 |0 (DE-627)1816972266 |4 aut | |
| 245 | 1 | 0 | |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems |c Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, and Kanako Suzuki |
| 264 | 1 | |c 28 Oct 2021 | |
| 300 | |a 20 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.09.2022 | ||
| 520 | |a A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary solutions. This class of {\it close-to-equilibrium} patterns includes stationary solutions that emerge due to the Turing instability of a spatially constant stationary solution. The main result of this work is instability of all regular patterns. It suggests that stable stationary solutions arising in models with non-diffusive components must be {\it far-from-equilibrium} exhibiting singularities. Such discontinuous stationary solutions have been considered in our parallel work [\textit{Stable discontinuous stationary solutions to reaction-diffusion-ODE systems}, preprint (2021)]. | ||
| 650 | 4 | |a 35K57, 35B35, 35B36, 92C15 | |
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 700 | 1 | |a Karch, Grzegorz |e VerfasserIn |0 (DE-588)1119925223 |0 (DE-627)873033469 |0 (DE-576)409787655 |4 aut | |
| 700 | 1 | |a Suzuki, Kanako |e VerfasserIn |0 (DE-588)1119925789 |0 (DE-627)873637720 |0 (DE-576)409787663 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2105.05023, Seite 1-20 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2105.05023 |g pages:1-20 |g extent:20 |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2105.05023 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2105.05023 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220923 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PM1044379626 |e 110200PM1044379626 |e 110000PM1044379626 |e 110400PM1044379626 |e 700000PM1044379626 |e 728500PM1044379626 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 999 | |a KXP-PPN1817336851 |e 4191089927 | ||
| BIB | |a Y | ||
| JSO | |a {"name":{"displayForm":["Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, and Kanako Suzuki"]},"physDesc":[{"extent":"20 S."}],"recId":"1817336851","relHost":[{"disp":"Instability of all regular stationary solutions to reaction-diffusion-ODE systemsArxiv","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"origin":[{"dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"year":"2021","text":"(2021), Artikel-ID 2105.05023, Seite 1-20","pages":"1-20","extent":"20"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1991 -"],"recId":"509006531","id":{"eki":["509006531"],"zdb":["2225896-6"]}}],"id":{"eki":["1817336851"],"doi":["10.48550/arXiv.2105.05023"]},"person":[{"given":"Szymon","role":"aut","display":"Cygan, Szymon","family":"Cygan"},{"family":"Marciniak-Czochra","display":"Marciniak-Czochra, Anna","given":"Anna","role":"aut"},{"family":"Karch","display":"Karch, Grzegorz","given":"Grzegorz","role":"aut"},{"given":"Kanako","role":"aut","display":"Suzuki, Kanako","family":"Suzuki"}],"note":["Gesehen am 28.09.2022"],"origin":[{"dateIssuedDisp":"28 Oct 2021","dateIssuedKey":"2021"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title_sort":"Instability of all regular stationary solutions to reaction-diffusion-ODE systems","title":"Instability of all regular stationary solutions to reaction-diffusion-ODE systems"}],"language":["eng"]} | ||
| SRT | |a CYGANSZYMOINSTABILIT2820 | ||