Instability of all regular stationary solutions to reaction-diffusion-ODE systems

A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cygan, Szymon (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Karch, Grzegorz (VerfasserIn) , Suzuki, Kanako (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 28 Oct 2021
In: Arxiv
Year: 2021, Pages: 1-20
DOI:10.48550/arXiv.2105.05023
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2105.05023
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2105.05023
Volltext
Verfasserangaben:Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, and Kanako Suzuki

MARC

LEADER 00000caa a2200000 c 4500
001 1817336851
003 DE-627
005 20230118161746.0
007 cr uuu---uuuuu
008 220923s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2105.05023  |2 doi 
035 |a (DE-627)1817336851 
035 |a (DE-599)KXP1817336851 
035 |a (OCoLC)1361714256 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cygan, Szymon  |e VerfasserIn  |0 (DE-588)1268443352  |0 (DE-627)1816972266  |4 aut 
245 1 0 |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems  |c Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, and Kanako Suzuki 
264 1 |c 28 Oct 2021 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.09.2022 
520 |a A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary solutions. This class of {\it close-to-equilibrium} patterns includes stationary solutions that emerge due to the Turing instability of a spatially constant stationary solution. The main result of this work is instability of all regular patterns. It suggests that stable stationary solutions arising in models with non-diffusive components must be {\it far-from-equilibrium} exhibiting singularities. Such discontinuous stationary solutions have been considered in our parallel work [\textit{Stable discontinuous stationary solutions to reaction-diffusion-ODE systems}, preprint (2021)]. 
650 4 |a 35K57, 35B35, 35B36, 92C15 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Karch, Grzegorz  |e VerfasserIn  |0 (DE-588)1119925223  |0 (DE-627)873033469  |0 (DE-576)409787655  |4 aut 
700 1 |a Suzuki, Kanako  |e VerfasserIn  |0 (DE-588)1119925789  |0 (DE-627)873637720  |0 (DE-576)409787663  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2105.05023, Seite 1-20  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems 
773 1 8 |g year:2021  |g elocationid:2105.05023  |g pages:1-20  |g extent:20  |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems 
856 4 0 |u https://doi.org/10.48550/arXiv.2105.05023  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2105.05023  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220923 
993 |a Article 
994 |a 2021 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |e 700000PM1044379626  |e 728500PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 2 
999 |a KXP-PPN1817336851  |e 4191089927 
BIB |a Y 
JSO |a {"name":{"displayForm":["Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, and Kanako Suzuki"]},"physDesc":[{"extent":"20 S."}],"recId":"1817336851","relHost":[{"disp":"Instability of all regular stationary solutions to reaction-diffusion-ODE systemsArxiv","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"note":["Gesehen am 28.05.2024"],"origin":[{"dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"year":"2021","text":"(2021), Artikel-ID 2105.05023, Seite 1-20","pages":"1-20","extent":"20"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1991 -"],"recId":"509006531","id":{"eki":["509006531"],"zdb":["2225896-6"]}}],"id":{"eki":["1817336851"],"doi":["10.48550/arXiv.2105.05023"]},"person":[{"given":"Szymon","role":"aut","display":"Cygan, Szymon","family":"Cygan"},{"family":"Marciniak-Czochra","display":"Marciniak-Czochra, Anna","given":"Anna","role":"aut"},{"family":"Karch","display":"Karch, Grzegorz","given":"Grzegorz","role":"aut"},{"given":"Kanako","role":"aut","display":"Suzuki, Kanako","family":"Suzuki"}],"note":["Gesehen am 28.09.2022"],"origin":[{"dateIssuedDisp":"28 Oct 2021","dateIssuedKey":"2021"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title_sort":"Instability of all regular stationary solutions to reaction-diffusion-ODE systems","title":"Instability of all regular stationary solutions to reaction-diffusion-ODE systems"}],"language":["eng"]} 
SRT |a CYGANSZYMOINSTABILIT2820