Spiralize: an R package for visualizing data on spirals

Spiral layout has two major advantages for data visualization. First, it is able to visualize data with long axes, which greatly improves the resolution of visualization. Second, it is efficient for time series data to reveal periodic patterns. Here, we present the R package spiralize that provides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gu, Zuguang (VerfasserIn) , Hübschmann, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 March 2022
In: Bioinformatics
Year: 2022, Jahrgang: 38, Heft: 5, Pages: 1434-1436
ISSN:1367-4811
DOI:10.1093/bioinformatics/btab778
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bioinformatics/btab778
Verlag, kostenfrei, Volltext: https://www.webofscience.com/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1093%2Fbioinformatics%2Fbtab778&DestApp=DOI&SrcAppSID=EUW1ED0E8AXtaNVtuJoqQvzdxy8jW&SrcJTitle=BIOINFORMATICS&DestDOIRegistrantName=Oxford+University+Press
Volltext
Verfasserangaben:Zuguang Gu and Daniel Huebschmann
Beschreibung
Zusammenfassung:Spiral layout has two major advantages for data visualization. First, it is able to visualize data with long axes, which greatly improves the resolution of visualization. Second, it is efficient for time series data to reveal periodic patterns. Here, we present the R package spiralize that provides a general solution for visualizing data on spirals. spiralize implements numerous graphics functions so that self-defined high-level graphics can be easily implemented by users. The flexibility and power of spiralize are demonstrated by five examples from real-world datasets.
Beschreibung:Advance access publication date: 26 November 2021
Gesehen am 26.09.2022
Beschreibung:Online Resource
ISSN:1367-4811
DOI:10.1093/bioinformatics/btab778