Evaluation of data imputation strategies in complex, deeply-phenotyped data sets: the case of the EU-AIMS Longitudinal European Autism Project

An increasing number of large-scale multi-modal research initiatives has been conducted in the typically developing population, e.g. Dev. Cogn. Neur. 32:43-54, 2018; PLoS Med. 12(3):e1001779, 2015; Elam and Van Essen, Enc. Comp. Neur., 2013, as well as in psychiatric cohorts, e.g. Trans. Psych. 10(1...

Full description

Saved in:
Bibliographic Details
Main Authors: Llera Arenas, Alberto (Author) , Brammer, M. (Author) , Oakley, B. (Author) , Tillmann, J. (Author) , Zabihi, M. (Author) , Amelink, J. S. (Author) , Mei, T. (Author) , Charman, T. (Author) , Ecker, C. (Author) , Dell’Acqua, F. (Author) , Banaschewski, Tobias (Author) , Moessnang, C. (Author) , Baron-Cohen, S. (Author) , Holt, R. (Author) , Durston, S. (Author) , Murphy, D. (Author) , Loth, E. (Author) , Buitelaar, J. K. (Author) , Floris, D. L. (Author) , Beckmann, C. F. (Author)
Format: Article (Journal)
Language:English
Published: 16 August 2022
In: BMC medical research methodology
Year: 2022, Volume: 22, Pages: 1-15
ISSN:1471-2288
DOI:10.1186/s12874-022-01656-z
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12874-022-01656-z
Get full text
Author Notes:A. Llera, M. Brammer, B. Oakley, J. Tillmann, M. Zabihi, J.S. Amelink, T. Mei, T. Charman, C. Ecker, F. Dell’Acqua, T. Banaschewski, C. Moessnang, S. Baron-Cohen, R. Holt, S. Durston, D. Murphy, E. Loth, J.K. Buitelaar, D.L. Floris and C.F. Beckmann

MARC

LEADER 00000caa a2200000 c 4500
001 1817697684
003 DE-627
005 20240417193650.0
007 cr uuu---uuuuu
008 220928s2022 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12874-022-01656-z  |2 doi 
035 |a (DE-627)1817697684 
035 |a (DE-599)KXP1817697684 
035 |a (OCoLC)1361695779 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Llera Arenas, Alberto  |e VerfasserIn  |0 (DE-588)1269049100  |0 (DE-627)1817714015  |4 aut 
245 1 0 |a Evaluation of data imputation strategies in complex, deeply-phenotyped data sets  |b the case of the EU-AIMS Longitudinal European Autism Project  |c A. Llera, M. Brammer, B. Oakley, J. Tillmann, M. Zabihi, J.S. Amelink, T. Mei, T. Charman, C. Ecker, F. Dell’Acqua, T. Banaschewski, C. Moessnang, S. Baron-Cohen, R. Holt, S. Durston, D. Murphy, E. Loth, J.K. Buitelaar, D.L. Floris and C.F. Beckmann 
264 1 |c 16 August 2022 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.09.2022 
520 |a An increasing number of large-scale multi-modal research initiatives has been conducted in the typically developing population, e.g. Dev. Cogn. Neur. 32:43-54, 2018; PLoS Med. 12(3):e1001779, 2015; Elam and Van Essen, Enc. Comp. Neur., 2013, as well as in psychiatric cohorts, e.g. Trans. Psych. 10(1):100, 2020; Mol. Psych. 19:659-667, 2014; Mol. Aut. 8:24, 2017; Eur. Child and Adol. Psych. 24(3):265-281, 2015. Missing data is a common problem in such datasets due to the difficulty of assessing multiple measures on a large number of participants. The consequences of missing data accumulate when researchers aim to integrate relationships across multiple measures. Here we aim to evaluate different imputation strategies to fill in missing values in clinical data from a large (total N = 764) and deeply phenotyped (i.e. range of clinical and cognitive instruments administered) sample of N = 453 autistic individuals and N = 311 control individuals recruited as part of the EU-AIMS Longitudinal European Autism Project (LEAP) consortium. In particular, we consider a total of 160 clinical measures divided in 15 overlapping subsets of participants. We use two simple but common univariate strategies—mean and median imputation—as well as a Round Robin regression approach involving four independent multivariate regression models including Bayesian Ridge regression, as well as several non-linear models: Decision Trees (Extra Trees., and Nearest Neighbours regression. We evaluate the models using the traditional mean square error towards removed available data, and also consider the Kullback-Leibler divergence between the observed and the imputed distributions. We show that all of the multivariate approaches tested provide a substantial improvement compared to typical univariate approaches. Further, our analyses reveal that across all 15 data-subsets tested, an Extra Trees regression approach provided the best global results. This not only allows the selection of a unique model to impute missing data for the LEAP project and delivers a fixed set of imputed clinical data to be used by researchers working with the LEAP dataset in the future, but provides more general guidelines for data imputation in large scale epidemiological studies. 
650 4 |a Clinical data 
650 4 |a Imputation 
650 4 |a Machine learning 
650 4 |a Multivariate 
700 1 |a Brammer, M.  |e VerfasserIn  |4 aut 
700 1 |a Oakley, B.  |e VerfasserIn  |4 aut 
700 1 |a Tillmann, J.  |e VerfasserIn  |4 aut 
700 1 |a Zabihi, M.  |e VerfasserIn  |4 aut 
700 1 |a Amelink, J. S.  |e VerfasserIn  |4 aut 
700 1 |a Mei, T.  |e VerfasserIn  |4 aut 
700 1 |a Charman, T.  |e VerfasserIn  |4 aut 
700 1 |a Ecker, C.  |e VerfasserIn  |4 aut 
700 1 |a Dell’Acqua, F.  |e VerfasserIn  |4 aut 
700 1 |a Banaschewski, Tobias  |d 1961-  |e VerfasserIn  |0 (DE-588)115856110  |0 (DE-627)507227301  |0 (DE-576)178364703  |4 aut 
700 1 |a Moessnang, C.  |e VerfasserIn  |4 aut 
700 1 |a Baron-Cohen, S.  |e VerfasserIn  |4 aut 
700 1 |a Holt, R.  |e VerfasserIn  |4 aut 
700 1 |a Durston, S.  |e VerfasserIn  |4 aut 
700 1 |a Murphy, D.  |e VerfasserIn  |4 aut 
700 1 |a Loth, E.  |e VerfasserIn  |4 aut 
700 1 |a Buitelaar, J. K.  |e VerfasserIn  |4 aut 
700 1 |a Floris, D. L.  |e VerfasserIn  |4 aut 
700 1 |a Beckmann, C. F.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t BMC medical research methodology  |d London : BioMed Central, 2001  |g 22(2022), Artikel-ID 229, Seite 1-15  |h Online-Ressource  |w (DE-627)326643818  |w (DE-600)2041362-2  |w (DE-576)10701467X  |x 1471-2288  |7 nnas  |a Evaluation of data imputation strategies in complex, deeply-phenotyped data sets the case of the EU-AIMS Longitudinal European Autism Project 
773 1 8 |g volume:22  |g year:2022  |g elocationid:229  |g pages:1-15  |g extent:15  |a Evaluation of data imputation strategies in complex, deeply-phenotyped data sets the case of the EU-AIMS Longitudinal European Autism Project 
856 4 0 |u https://doi.org/10.1186/s12874-022-01656-z  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20220928 
993 |a Article 
994 |a 2022 
998 |g 115856110  |a Banaschewski, Tobias  |m 115856110:Banaschewski, Tobias  |d 60000  |e 60000PB115856110  |k 0/60000/  |p 11 
999 |a KXP-PPN1817697684  |e 4192898713 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Llera Arenas, Alberto","role":"aut","given":"Alberto","family":"Llera Arenas"},{"family":"Brammer","display":"Brammer, M.","role":"aut","given":"M."},{"family":"Oakley","role":"aut","given":"B.","display":"Oakley, B."},{"given":"J.","role":"aut","display":"Tillmann, J.","family":"Tillmann"},{"given":"M.","role":"aut","display":"Zabihi, M.","family":"Zabihi"},{"role":"aut","given":"J. S.","display":"Amelink, J. S.","family":"Amelink"},{"family":"Mei","display":"Mei, T.","given":"T.","role":"aut"},{"family":"Charman","display":"Charman, T.","role":"aut","given":"T."},{"display":"Ecker, C.","given":"C.","role":"aut","family":"Ecker"},{"given":"F.","role":"aut","display":"Dell’Acqua, F.","family":"Dell’Acqua"},{"family":"Banaschewski","display":"Banaschewski, Tobias","given":"Tobias","role":"aut"},{"given":"C.","role":"aut","display":"Moessnang, C.","family":"Moessnang"},{"display":"Baron-Cohen, S.","role":"aut","given":"S.","family":"Baron-Cohen"},{"family":"Holt","given":"R.","role":"aut","display":"Holt, R."},{"given":"S.","role":"aut","display":"Durston, S.","family":"Durston"},{"given":"D.","role":"aut","display":"Murphy, D.","family":"Murphy"},{"family":"Loth","display":"Loth, E.","given":"E.","role":"aut"},{"family":"Buitelaar","display":"Buitelaar, J. K.","role":"aut","given":"J. K."},{"given":"D. L.","role":"aut","display":"Floris, D. L.","family":"Floris"},{"family":"Beckmann","display":"Beckmann, C. F.","role":"aut","given":"C. F."}],"name":{"displayForm":["A. Llera, M. Brammer, B. Oakley, J. Tillmann, M. Zabihi, J.S. Amelink, T. Mei, T. Charman, C. Ecker, F. Dell’Acqua, T. Banaschewski, C. Moessnang, S. Baron-Cohen, R. Holt, S. Durston, D. Murphy, E. Loth, J.K. Buitelaar, D.L. Floris and C.F. Beckmann"]},"note":["Gesehen am 28.09.2022"],"relHost":[{"pubHistory":["1.2001 -"],"title":[{"title":"BMC medical research methodology","title_sort":"BMC medical research methodology"}],"part":{"text":"22(2022), Artikel-ID 229, Seite 1-15","year":"2022","volume":"22","extent":"15","pages":"1-15"},"language":["eng"],"recId":"326643818","origin":[{"publisherPlace":"London ; Berlin ; Heidelberg","dateIssuedDisp":"2001-","publisher":"BioMed Central ; Springer","dateIssuedKey":"2001"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["326643818"],"issn":["1471-2288"],"zdb":["2041362-2"]},"disp":"Evaluation of data imputation strategies in complex, deeply-phenotyped data sets the case of the EU-AIMS Longitudinal European Autism ProjectBMC medical research methodology","note":["Gesehen am 15.01.16"]}],"id":{"doi":["10.1186/s12874-022-01656-z"],"eki":["1817697684"]},"physDesc":[{"extent":"15 S."}],"recId":"1817697684","origin":[{"dateIssuedDisp":"16 August 2022","dateIssuedKey":"2022"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"title":[{"subtitle":"the case of the EU-AIMS Longitudinal European Autism Project","title":"Evaluation of data imputation strategies in complex, deeply-phenotyped data sets","title_sort":"Evaluation of data imputation strategies in complex, deeply-phenotyped data sets"}]} 
SRT |a LLERAARENAEVALUATION1620