Analysis of algebraic flux correction for semi-discrete advection problems

We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hajduk, Hennes (VerfasserIn) , Rupp, Andreas (VerfasserIn) , Kuzmin, D. (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 12 Apr 2021
In: Arxiv
Year: 2021, Pages: 1-27
DOI:10.48550/arXiv.2104.05639
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2104.05639
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2104.05639
Volltext
Verfasserangaben:Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin
Beschreibung
Zusammenfassung:We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error of the spatial semi-discretization. Moreover, we address the important issue of stabilization for raw antidiffusive fluxes. Our a priori error analysis reveals that their limited counterparts should satisfy a generalized coercivity condition. We introduce a limiter for enforcing this condition in the process of flux correction. To verify the results of our theoretical studies, we perform numerical experiments for simple one-dimensional test problems. The methods under investigation exhibit the expected behavior in all numerical examples. In particular, the use of stabilized fluxes improves the accuracy of numerical solutions and coercivity enforcement often becomes redundant.
Beschreibung:Gesehen am 29.09.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2104.05639