Analysis of algebraic flux correction for semi-discrete advection problems
We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
12 Apr 2021
|
| In: |
Arxiv
Year: 2021, Pages: 1-27 |
| DOI: | 10.48550/arXiv.2104.05639 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2104.05639 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2104.05639 |
| Author Notes: | Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1817782819 | ||
| 003 | DE-627 | ||
| 005 | 20230118161552.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 220929s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2104.05639 |2 doi | |
| 035 | |a (DE-627)1817782819 | ||
| 035 | |a (DE-599)KXP1817782819 | ||
| 035 | |a (OCoLC)1361714090 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hajduk, Hennes |d 1992- |e VerfasserIn |0 (DE-588)1182436048 |0 (DE-627)1662744749 |4 aut | |
| 245 | 1 | 0 | |a Analysis of algebraic flux correction for semi-discrete advection problems |c Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin |
| 264 | 1 | |c 12 Apr 2021 | |
| 300 | |a 27 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.09.2022 | ||
| 520 | |a We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error of the spatial semi-discretization. Moreover, we address the important issue of stabilization for raw antidiffusive fluxes. Our a priori error analysis reveals that their limited counterparts should satisfy a generalized coercivity condition. We introduce a limiter for enforcing this condition in the process of flux correction. To verify the results of our theoretical studies, we perform numerical experiments for simple one-dimensional test problems. The methods under investigation exhibit the expected behavior in all numerical examples. In particular, the use of stabilized fluxes improves the accuracy of numerical solutions and coercivity enforcement often becomes redundant. | ||
| 650 | 4 | |a Mathematics - Numerical Analysis | |
| 700 | 1 | |a Rupp, Andreas |d 1992- |e VerfasserIn |0 (DE-588)1191198812 |0 (DE-627)1669602907 |4 aut | |
| 700 | 1 | |a Kuzmin, D. |d 1974- |e VerfasserIn |0 (DE-588)1011171775 |0 (DE-627)658048880 |0 (DE-576)34106016X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 2104.05639, Seite 1-27 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Analysis of algebraic flux correction for semi-discrete advection problems |
| 773 | 1 | 8 | |g year:2021 |g elocationid:2104.05639 |g pages:1-27 |g extent:27 |a Analysis of algebraic flux correction for semi-discrete advection problems |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2104.05639 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2104.05639 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20220929 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1191198812 |a Rupp, Andreas |m 1191198812:Rupp, Andreas |d 700000 |d 708000 |d 700000 |d 728500 |e 700000PR1191198812 |e 708000PR1191198812 |e 700000PR1191198812 |e 728500PR1191198812 |k 0/700000/ |k 1/700000/708000/ |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 999 | |a KXP-PPN1817782819 |e 419333161X | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"role":"aut","display":"Hajduk, Hennes","roleDisplay":"VerfasserIn","given":"Hennes","family":"Hajduk"},{"roleDisplay":"VerfasserIn","display":"Rupp, Andreas","role":"aut","family":"Rupp","given":"Andreas"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kuzmin, D.","given":"D.","family":"Kuzmin"}],"title":[{"title":"Analysis of algebraic flux correction for semi-discrete advection problems","title_sort":"Analysis of algebraic flux correction for semi-discrete advection problems"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 29.09.2022"],"language":["eng"],"recId":"1817782819","name":{"displayForm":["Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin"]},"origin":[{"dateIssuedDisp":"12 Apr 2021","dateIssuedKey":"2021"}],"id":{"eki":["1817782819"],"doi":["10.48550/arXiv.2104.05639"]},"physDesc":[{"extent":"27 S."}],"relHost":[{"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2021), Artikel-ID 2104.05639, Seite 1-27","extent":"27","year":"2021","pages":"1-27"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"Analysis of algebraic flux correction for semi-discrete advection problemsArxiv","note":["Gesehen am 28.05.2024"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}]}]} | ||
| SRT | |a HAJDUKHENNANALYSISOF1220 | ||