Analysis of algebraic flux correction for semi-discrete advection problems

We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error...

Full description

Saved in:
Bibliographic Details
Main Authors: Hajduk, Hennes (Author) , Rupp, Andreas (Author) , Kuzmin, D. (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 12 Apr 2021
In: Arxiv
Year: 2021, Pages: 1-27
DOI:10.48550/arXiv.2104.05639
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2104.05639
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2104.05639
Get full text
Author Notes:Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin

MARC

LEADER 00000caa a2200000 c 4500
001 1817782819
003 DE-627
005 20230118161552.0
007 cr uuu---uuuuu
008 220929s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2104.05639  |2 doi 
035 |a (DE-627)1817782819 
035 |a (DE-599)KXP1817782819 
035 |a (OCoLC)1361714090 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hajduk, Hennes  |d 1992-  |e VerfasserIn  |0 (DE-588)1182436048  |0 (DE-627)1662744749  |4 aut 
245 1 0 |a Analysis of algebraic flux correction for semi-discrete advection problems  |c Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin 
264 1 |c 12 Apr 2021 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.09.2022 
520 |a We present stability and error analysis for algebraic flux correction schemes based on monolithic convex limiting. For a continuous finite element discretization of the time-dependent advection equation, we prove global-in-time existence and the worst-case convergence rate of 1/2 w.r.t. the L2 error of the spatial semi-discretization. Moreover, we address the important issue of stabilization for raw antidiffusive fluxes. Our a priori error analysis reveals that their limited counterparts should satisfy a generalized coercivity condition. We introduce a limiter for enforcing this condition in the process of flux correction. To verify the results of our theoretical studies, we perform numerical experiments for simple one-dimensional test problems. The methods under investigation exhibit the expected behavior in all numerical examples. In particular, the use of stabilized fluxes improves the accuracy of numerical solutions and coercivity enforcement often becomes redundant. 
650 4 |a Mathematics - Numerical Analysis 
700 1 |a Rupp, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1191198812  |0 (DE-627)1669602907  |4 aut 
700 1 |a Kuzmin, D.  |d 1974-  |e VerfasserIn  |0 (DE-588)1011171775  |0 (DE-627)658048880  |0 (DE-576)34106016X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2104.05639, Seite 1-27  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Analysis of algebraic flux correction for semi-discrete advection problems 
773 1 8 |g year:2021  |g elocationid:2104.05639  |g pages:1-27  |g extent:27  |a Analysis of algebraic flux correction for semi-discrete advection problems 
856 4 0 |u https://doi.org/10.48550/arXiv.2104.05639  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2104.05639  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220929 
993 |a Article 
994 |a 2021 
998 |g 1191198812  |a Rupp, Andreas  |m 1191198812:Rupp, Andreas  |d 700000  |d 708000  |d 700000  |d 728500  |e 700000PR1191198812  |e 708000PR1191198812  |e 700000PR1191198812  |e 728500PR1191198812  |k 0/700000/  |k 1/700000/708000/  |k 0/700000/  |k 1/700000/728500/  |p 2 
999 |a KXP-PPN1817782819  |e 419333161X 
BIB |a Y 
JSO |a {"person":[{"role":"aut","display":"Hajduk, Hennes","roleDisplay":"VerfasserIn","given":"Hennes","family":"Hajduk"},{"roleDisplay":"VerfasserIn","display":"Rupp, Andreas","role":"aut","family":"Rupp","given":"Andreas"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kuzmin, D.","given":"D.","family":"Kuzmin"}],"title":[{"title":"Analysis of algebraic flux correction for semi-discrete advection problems","title_sort":"Analysis of algebraic flux correction for semi-discrete advection problems"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 29.09.2022"],"language":["eng"],"recId":"1817782819","name":{"displayForm":["Hennes Hajduk, Andreas Rupp, and Dmitri Kuzmin"]},"origin":[{"dateIssuedDisp":"12 Apr 2021","dateIssuedKey":"2021"}],"id":{"eki":["1817782819"],"doi":["10.48550/arXiv.2104.05639"]},"physDesc":[{"extent":"27 S."}],"relHost":[{"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2021), Artikel-ID 2104.05639, Seite 1-27","extent":"27","year":"2021","pages":"1-27"},"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"Analysis of algebraic flux correction for semi-discrete advection problemsArxiv","note":["Gesehen am 28.05.2024"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-"}]}]} 
SRT |a HAJDUKHENNANALYSISOF1220