Analysis of injection operators in multigrid solvers for hybridized discontinuous Galerkin methods

Uniform convergence of the geometric multigrid V-cycle is proven for HDG methods with a new set of assumptions on the injection operators from coarser to finer meshes. The scheme involves standard smoothers and local solvers which are bounded, convergent, and consistent. Elliptic regularity is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lu, Peipei (VerfasserIn) , Rupp, Andreas (VerfasserIn) , Kanschat, Guido (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 31 Mar 2021
In: Arxiv
Year: 2021, Pages: 1-21
DOI:10.48550/arXiv.2104.00118
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2104.00118
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2104.00118
Volltext
Verfasserangaben:Peipei Lu, Andreas Rupp, and Guido Kanschat
Beschreibung
Zusammenfassung:Uniform convergence of the geometric multigrid V-cycle is proven for HDG methods with a new set of assumptions on the injection operators from coarser to finer meshes. The scheme involves standard smoothers and local solvers which are bounded, convergent, and consistent. Elliptic regularity is used in the proofs. The new assumptions admit injection operators local to a single coarse grid cell. Examples for admissible injection operators are given. The analysis applies to the hybridized local discontinuous Galerkin method, hybridized Raviart-Thomas, and hybridized Brezzi-Douglas-Marini mixed element methods. Numerical experiments are provided to confirm the theoretical results.
Beschreibung:Gesehen am 29.09.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2104.00118