Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach: preclinical comparative biomechanical studies

Suggesting that bioartificial vascular scaffolds cannot but tissue-engineered vessels can withstand biomechanical stress, we developed in vitro methods for preclinical biological material testings. The aim of the study was to evaluate the influence of revitalization of xenogenous scaffolds on biomec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heine, Jörg (VerfasserIn) , Schmiedl, Andreas (VerfasserIn) , Cebotari, Serghei (VerfasserIn) , Karck, Matthias (VerfasserIn) , Mertsching, Heike (VerfasserIn) , Haverich, Axel (VerfasserIn) , Kallenbach, Klaus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [October 2011]
In: Artificial organs
Year: 2011, Jahrgang: 35, Heft: 10, Pages: 930-940
ISSN:1525-1594
DOI:10.1111/j.1525-1594.2010.01199.x
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1111/j.1525-1594.2010.01199.x
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1525-1594.2010.01199.x
Volltext
Verfasserangaben:Jörg Heine, Andreas Schmiedl, Serghei Cebotari, Matthias Karck, Heike Mertsching, Axel Haverich, and Klaus Kallenbach

MARC

LEADER 00000caa a2200000 c 4500
001 1817964445
003 DE-627
005 20230710112918.0
007 cr uuu---uuuuu
008 221004s2011 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1525-1594.2010.01199.x  |2 doi 
035 |a (DE-627)1817964445 
035 |a (DE-599)KXP1817964445 
035 |a (OCoLC)1389781436 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Heine, Jörg  |d 1973-  |e VerfasserIn  |0 (DE-588)131565893  |0 (DE-627)510984304  |0 (DE-576)298590662  |4 aut 
245 1 0 |a Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach  |b preclinical comparative biomechanical studies  |c Jörg Heine, Andreas Schmiedl, Serghei Cebotari, Matthias Karck, Heike Mertsching, Axel Haverich, and Klaus Kallenbach 
264 1 |c [October 2011] 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First published: 07 July 2011 
500 |a Gesehen am 04.10.2022 
520 |a Suggesting that bioartificial vascular scaffolds cannot but tissue-engineered vessels can withstand biomechanical stress, we developed in vitro methods for preclinical biological material testings. The aim of the study was to evaluate the influence of revitalization of xenogenous scaffolds on biomechanical stability of tissue-engineered vessels. For measurement of radial distensibility, a salt-solution inflation method was used. The longitudinal tensile strength test (DIN 50145) was applied on bone-shaped specimen: tensile/tear strength (SigmaB/R), elongation at maximum yield stress/rupture (DeltaB/R), and modulus of elasticity were determined of native (NAs; n = 6), decellularized (DAs; n = 6), and decellularized carotid arteries reseeded with human vascular smooth muscle cells and human vascular endothelial cells (RAs; n = 7). Radial distensibility of DAs was significantly lower (113%) than for NAs (135%) (P < 0.001) or RAs (127%) (P = 0.018). At levels of 120 mm Hg and more, decellularized matrices burst (120, 160 [n = 2] and 200 mm Hg). Although RAs withstood levels up to 300 mm Hg, ANOVA revealed a significant difference from NA (P = 0.018). Compared with native vessels (NAs), SigmaB/R values were lower in DAs (44%; 57%) (P = 0.014 and P = 0.002, respectively) and were significantly higher in RAs (71%; 83%) (both P < 0.001). Similarly, DeltaB/R values were much higher in DAs compared with NAs (94%; 88%) (P < 0.001) and RAs (87%; 103%) (P < 0.001), but equivalent in NAs and RAs. Modulus of elasticity (2.6/1.1/3.7 to 16.6 N/mm2) of NAs, DAs, RAs was comparable (P = 0.088). Using newly developed in vitro methods for small-caliber vascular graft testing, this study proved that revitalization of decellularized connective tissue scaffolds led to vascular graft stability able to withstand biomechanical stress mimicking the human circulation. This tissue engineering approach provides a sufficiently stable autologized graft. 
650 4 |a Biomedical engineering 
650 4 |a Blood vessel 
650 4 |a Endothelial cells 
650 4 |a Matrix 
650 4 |a Mechanical effects 
650 4 |a Strain 
650 4 |a Tensile strength 
650 4 |a Tissue development and growth 
650 4 |a Tissue engineering 
700 1 |a Schmiedl, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Cebotari, Serghei  |e VerfasserIn  |4 aut 
700 1 |a Karck, Matthias  |d 1961-  |e VerfasserIn  |0 (DE-588)130833525  |0 (DE-627)505909340  |0 (DE-576)298366169  |4 aut 
700 1 |a Mertsching, Heike  |e VerfasserIn  |4 aut 
700 1 |a Haverich, Axel  |e VerfasserIn  |4 aut 
700 1 |a Kallenbach, Klaus  |d 1965-  |e VerfasserIn  |0 (DE-588)115399364  |0 (DE-627)077223926  |0 (DE-576)289859875  |4 aut 
773 0 8 |i Enthalten in  |t Artificial organs  |d Oxford [u.a.] : Wiley-Blackwell, 1977  |g 35(2011), 10, Seite 930-940  |h Online-Ressource  |w (DE-627)320431606  |w (DE-600)2003825-2  |w (DE-576)091140196  |x 1525-1594  |7 nnas  |a Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach preclinical comparative biomechanical studies 
773 1 8 |g volume:35  |g year:2011  |g number:10  |g pages:930-940  |g extent:11  |a Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach preclinical comparative biomechanical studies 
856 4 0 |u https://doi.org/10.1111/j.1525-1594.2010.01199.x  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1525-1594.2010.01199.x  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221004 
993 |a Article 
994 |a 2011 
998 |g 115399364  |a Kallenbach, Klaus  |m 115399364:Kallenbach, Klaus  |d 910000  |d 910200  |d 50000  |e 910000PK115399364  |e 910200PK115399364  |e 50000PK115399364  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 7  |y j 
998 |g 130833525  |a Karck, Matthias  |m 130833525:Karck, Matthias  |d 910000  |d 910200  |e 910000PK130833525  |e 910200PK130833525  |k 0/910000/  |k 1/910000/910200/  |p 4 
999 |a KXP-PPN1817964445  |e 4194193083 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1111/j.1525-1594.2010.01199.x"],"eki":["1817964445"]},"name":{"displayForm":["Jörg Heine, Andreas Schmiedl, Serghei Cebotari, Matthias Karck, Heike Mertsching, Axel Haverich, and Klaus Kallenbach"]},"title":[{"title":"Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach","title_sort":"Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach","subtitle":"preclinical comparative biomechanical studies"}],"note":["First published: 07 July 2011","Gesehen am 04.10.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"display":"Heine, Jörg","family":"Heine","given":"Jörg","role":"aut"},{"role":"aut","given":"Andreas","family":"Schmiedl","display":"Schmiedl, Andreas"},{"family":"Cebotari","role":"aut","given":"Serghei","display":"Cebotari, Serghei"},{"display":"Karck, Matthias","family":"Karck","role":"aut","given":"Matthias"},{"display":"Mertsching, Heike","role":"aut","given":"Heike","family":"Mertsching"},{"role":"aut","given":"Axel","family":"Haverich","display":"Haverich, Axel"},{"family":"Kallenbach","role":"aut","given":"Klaus","display":"Kallenbach, Klaus"}],"relHost":[{"recId":"320431606","physDesc":[{"extent":"Online-Ressource"}],"disp":"Tissue engineering human small-caliber autologous vessels using a xenogenous decellularized connective tissue matrix approach preclinical comparative biomechanical studiesArtificial organs","origin":[{"publisher":"Wiley-Blackwell ; Blackwell Science ; Blackwell","dateIssuedDisp":"1977-","dateIssuedKey":"1977","publisherPlace":"Oxford [u.a.] ; Malden, Mass. ; Oxford [u.a.]"}],"title":[{"title":"Artificial organs","title_sort":"Artificial organs","subtitle":"official journal of the International Federation for Artificial Organs and the International Faculty for Artificial Organs"}],"note":["Gesehen am 03.02.04"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1977 -"],"corporate":[{"display":"International Society for Artificial Organs","role":"isb"}],"part":{"volume":"35","year":"2011","extent":"11","text":"35(2011), 10, Seite 930-940","issue":"10","pages":"930-940"},"id":{"zdb":["2003825-2"],"doi":["10.1111/(ISSN)1525-1594"],"eki":["320431606"],"issn":["1525-1594"]}}],"origin":[{"dateIssuedDisp":"[October 2011]","dateIssuedKey":"2011"}],"recId":"1817964445","physDesc":[{"extent":"11 S.","noteIll":"Illustrationen"}]} 
SRT |a HEINEJOERGTISSUEENGI2011