Introducing sub-Riemannian and sub-Finsler Billiards
We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-define...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
9 December 2020
|
| Ausgabe: | Version v2 |
| In: |
Arxiv
Year: 2020, Pages: 1-38 |
| DOI: | 10.48550/arXiv.2011.12136 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2011.12136 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2011.12136 |
| Verfasserangaben: | Lucas Dahinden and Álvaro del Pino |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818028719 | ||
| 003 | DE-627 | ||
| 005 | 20230118164642.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221005s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2011.12136 |2 doi | |
| 035 | |a (DE-627)1818028719 | ||
| 035 | |a (DE-599)KXP1818028719 | ||
| 035 | |a (OCoLC)1361714922 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Dahinden, Lucas |e VerfasserIn |0 (DE-588)1210204797 |0 (DE-627)1698267231 |4 aut | |
| 245 | 1 | 0 | |a Introducing sub-Riemannian and sub-Finsler Billiards |c Lucas Dahinden and Álvaro del Pino |
| 250 | |a Version v2 | ||
| 264 | 1 | |c 9 December 2020 | |
| 300 | |a 38 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Identifizierung der Ressource nach: 9 Dec 2020 | ||
| 500 | |a Version v1 vom 24. November 2020, Version v2 vom 9. Dezember 2020 | ||
| 500 | |a Gesehen am 05.10.2022 | ||
| 520 | |a We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts. We then study some concrete tables in 3-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits. | ||
| 650 | 4 | |a 53C17 (Primary) 37C83, 53D25 (Secondary) | |
| 650 | 4 | |a Mathematics - Differential Geometry | |
| 650 | 4 | |a Mathematics - Dynamical Systems | |
| 650 | 4 | |a Mathematics - Symplectic Geometry | |
| 700 | 1 | |a Pino Gómez, Álvaro del |e VerfasserIn |0 (DE-588)1269503782 |0 (DE-627)181803235X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2020), Artikel-ID 2011.12136, Seite 1-38 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Introducing sub-Riemannian and sub-Finsler Billiards |
| 773 | 1 | 8 | |g year:2020 |g elocationid:2011.12136 |g pages:1-38 |g extent:38 |a Introducing sub-Riemannian and sub-Finsler Billiards |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2011.12136 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2011.12136 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221005 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1210204797 |a Dahinden, Lucas |m 1210204797:Dahinden, Lucas |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PD1210204797 |e 110100PD1210204797 |e 110000PD1210204797 |e 110400PD1210204797 |e 700000PD1210204797 |e 728500PD1210204797 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1818028719 |e 4194445066 | ||
| BIB | |a Y | ||
| JSO | |a {"id":{"eki":["1818028719"],"doi":["10.48550/arXiv.2011.12136"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"9 December 2020","edition":"Version v2"}],"name":{"displayForm":["Lucas Dahinden and Álvaro del Pino"]},"relHost":[{"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"part":{"text":"(2020), Artikel-ID 2011.12136, Seite 1-38","extent":"38","year":"2020","pages":"1-38"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"Introducing sub-Riemannian and sub-Finsler BilliardsArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"}}],"physDesc":[{"extent":"38 S."}],"title":[{"title":"Introducing sub-Riemannian and sub-Finsler Billiards","title_sort":"Introducing sub-Riemannian and sub-Finsler Billiards"}],"person":[{"roleDisplay":"VerfasserIn","display":"Dahinden, Lucas","role":"aut","family":"Dahinden","given":"Lucas"},{"family":"Pino Gómez","given":"Álvaro del","display":"Pino Gómez, Álvaro del","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"1818028719","language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Identifizierung der Ressource nach: 9 Dec 2020","Version v1 vom 24. November 2020, Version v2 vom 9. Dezember 2020","Gesehen am 05.10.2022"]} | ||
| SRT | |a DAHINDENLUINTRODUCIN9202 | ||