Introducing sub-Riemannian and sub-Finsler Billiards

We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-define...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dahinden, Lucas (VerfasserIn) , Pino Gómez, Álvaro del (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 9 December 2020
Ausgabe:Version v2
In: Arxiv
Year: 2020, Pages: 1-38
DOI:10.48550/arXiv.2011.12136
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2011.12136
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2011.12136
Volltext
Verfasserangaben:Lucas Dahinden and Álvaro del Pino

MARC

LEADER 00000caa a2200000 c 4500
001 1818028719
003 DE-627
005 20230118164642.0
007 cr uuu---uuuuu
008 221005s2020 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2011.12136  |2 doi 
035 |a (DE-627)1818028719 
035 |a (DE-599)KXP1818028719 
035 |a (OCoLC)1361714922 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Dahinden, Lucas  |e VerfasserIn  |0 (DE-588)1210204797  |0 (DE-627)1698267231  |4 aut 
245 1 0 |a Introducing sub-Riemannian and sub-Finsler Billiards  |c Lucas Dahinden and Álvaro del Pino 
250 |a Version v2 
264 1 |c 9 December 2020 
300 |a 38 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Identifizierung der Ressource nach: 9 Dec 2020 
500 |a Version v1 vom 24. November 2020, Version v2 vom 9. Dezember 2020 
500 |a Gesehen am 05.10.2022 
520 |a We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts. We then study some concrete tables in 3-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits. 
650 4 |a 53C17 (Primary) 37C83, 53D25 (Secondary) 
650 4 |a Mathematics - Differential Geometry 
650 4 |a Mathematics - Dynamical Systems 
650 4 |a Mathematics - Symplectic Geometry 
700 1 |a Pino Gómez, Álvaro del  |e VerfasserIn  |0 (DE-588)1269503782  |0 (DE-627)181803235X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2020), Artikel-ID 2011.12136, Seite 1-38  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Introducing sub-Riemannian and sub-Finsler Billiards 
773 1 8 |g year:2020  |g elocationid:2011.12136  |g pages:1-38  |g extent:38  |a Introducing sub-Riemannian and sub-Finsler Billiards 
856 4 0 |u https://doi.org/10.48550/arXiv.2011.12136  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2011.12136  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221005 
993 |a Article 
994 |a 2020 
998 |g 1210204797  |a Dahinden, Lucas  |m 1210204797:Dahinden, Lucas  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PD1210204797  |e 110100PD1210204797  |e 110000PD1210204797  |e 110400PD1210204797  |e 700000PD1210204797  |e 728500PD1210204797  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1818028719  |e 4194445066 
BIB |a Y 
JSO |a {"id":{"eki":["1818028719"],"doi":["10.48550/arXiv.2011.12136"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"9 December 2020","edition":"Version v2"}],"name":{"displayForm":["Lucas Dahinden and Álvaro del Pino"]},"relHost":[{"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"part":{"text":"(2020), Artikel-ID 2011.12136, Seite 1-38","extent":"38","year":"2020","pages":"1-38"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"],"language":["eng"],"recId":"509006531","note":["Gesehen am 28.05.2024"],"disp":"Introducing sub-Riemannian and sub-Finsler BilliardsArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"}}],"physDesc":[{"extent":"38 S."}],"title":[{"title":"Introducing sub-Riemannian and sub-Finsler Billiards","title_sort":"Introducing sub-Riemannian and sub-Finsler Billiards"}],"person":[{"roleDisplay":"VerfasserIn","display":"Dahinden, Lucas","role":"aut","family":"Dahinden","given":"Lucas"},{"family":"Pino Gómez","given":"Álvaro del","display":"Pino Gómez, Álvaro del","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"1818028719","language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Identifizierung der Ressource nach: 9 Dec 2020","Version v1 vom 24. November 2020, Version v2 vom 9. Dezember 2020","Gesehen am 05.10.2022"]} 
SRT |a DAHINDENLUINTRODUCIN9202