Assignment flow for order-constrained OCT segmentation

At the present time optical coherence tomography (OCT) is among the most commonly used non-invasive imaging methods for the acquisition of large volumetric scans of human retinal tissues and vasculature. The substantial increase of accessible highly resolved 3D samples at the optic nerve head and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sitenko, Dmitrij (VerfasserIn) , Boll, Bastian (VerfasserIn) , Schnörr, Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 September 2021
In: International journal of computer vision
Year: 2021, Jahrgang: 129, Heft: 11, Pages: 3088-3118
ISSN:1573-1405
DOI:10.1007/s11263-021-01520-5
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s11263-021-01520-5
Volltext
Verfasserangaben:Dmitrij Sitenko, Bastian Boll, Christoph Schnörr

MARC

LEADER 00000caa a2200000 c 4500
001 1818047098
003 DE-627
005 20230426172550.0
007 cr uuu---uuuuu
008 221005s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11263-021-01520-5  |2 doi 
035 |a (DE-627)1818047098 
035 |a (DE-599)KXP1818047098 
035 |a (OCoLC)1361713923 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Sitenko, Dmitrij  |d 1991-  |e VerfasserIn  |0 (DE-588)1269603604  |0 (DE-627)1818104296  |4 aut 
245 1 0 |a Assignment flow for order-constrained OCT segmentation  |c Dmitrij Sitenko, Bastian Boll, Christoph Schnörr 
264 1 |c 3 September 2021 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.10.2022 
520 |a At the present time optical coherence tomography (OCT) is among the most commonly used non-invasive imaging methods for the acquisition of large volumetric scans of human retinal tissues and vasculature. The substantial increase of accessible highly resolved 3D samples at the optic nerve head and the macula is directly linked to medical advancements in early detection of eye diseases. To resolve decisive information from extracted OCT volumes and to make it applicable for further diagnostic analysis, the exact measurement of retinal layer thicknesses serves as an essential task be done for each patient separately. However, manual examination of OCT scans is a demanding and time consuming task, which is typically made difficult by the presence of tissue-dependent speckle noise. Therefore, the elaboration of automated segmentation models has become an important task in the field of medical image processing. We propose a novel, purely data driven geometric approach to order-constrained 3D OCT retinal cell layer segmentation which takes as input data in any metric space and can be implemented using only simple, highly parallelizable operations. As opposed to many established retinal layer segmentation methods, we use only locally extracted features as input and do not employ any global shape prior. The physiological order of retinal cell layers and membranes is achieved through the introduction of a smoothed energy term. This is combined with additional regularization of local smoothness to yield highly accurate 3D segmentations. The approach thereby systematically avoid bias pertaining to global shape and is hence suited for the detection of anatomical changes of retinal tissue structure. To demonstrate its robustness, we compare two different choices of features on a data set of manually annotated 3D OCT volumes of healthy human retina. The quality of computed segmentations is compared to the state of the art in automatic retinal layer segmention as well as to manually annotated ground truth data in terms of mean absolute error and Dice similarity coefficient. Visualizations of segmented volumes are also provided. 
650 4 |a Assignment flow 
650 4 |a Assignment manifold 
650 4 |a Covariance descriptor 
650 4 |a Information geometry 
650 4 |a Optical coherence tomography 
700 1 |a Boll, Bastian  |d 1996-  |e VerfasserIn  |0 (DE-588)1241416443  |0 (DE-627)1770926682  |4 aut 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t International journal of computer vision  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1987  |g 129(2021), 11, Seite 3088-3118  |h Online-Ressource  |w (DE-627)271350083  |w (DE-600)1479903-0  |w (DE-576)102669104  |x 1573-1405  |7 nnas  |a Assignment flow for order-constrained OCT segmentation 
773 1 8 |g volume:129  |g year:2021  |g number:11  |g pages:3088-3118  |g extent:31  |a Assignment flow for order-constrained OCT segmentation 
856 4 0 |u https://doi.org/10.1007/s11263-021-01520-5  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221005 
993 |a Article 
994 |a 2021 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PS1023033348  |e 110200PS1023033348  |e 110000PS1023033348  |e 110400PS1023033348  |e 700000PS1023033348  |e 728500PS1023033348  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
998 |g 1241416443  |a Boll, Bastian  |m 1241416443:Boll, Bastian  |d 700000  |d 708070  |e 700000PB1241416443  |e 708070PB1241416443  |k 0/700000/  |k 1/700000/708070/  |p 2 
999 |a KXP-PPN1818047098  |e 4194567854 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1007/s11263-021-01520-5"],"eki":["1818047098"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"271350083","pubHistory":["1.1987 -"],"id":{"eki":["271350083"],"issn":["1573-1405"],"zdb":["1479903-0"]},"disp":"Assignment flow for order-constrained OCT segmentationInternational journal of computer vision","part":{"issue":"11","extent":"31","volume":"129","year":"2021","pages":"3088-3118","text":"129(2021), 11, Seite 3088-3118"},"origin":[{"dateIssuedKey":"1987","publisher":"Springer Science + Business Media B.V ; Kluwer","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedDisp":"1987-"}],"note":["Gesehen am 01.11.05"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"International journal of computer vision","title":"International journal of computer vision"}],"language":["eng"]}],"physDesc":[{"extent":"31 S."}],"name":{"displayForm":["Dmitrij Sitenko, Bastian Boll, Christoph Schnörr"]},"recId":"1818047098","origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"3 September 2021"}],"note":["Gesehen am 05.10.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Assignment flow for order-constrained OCT segmentation","title_sort":"Assignment flow for order-constrained OCT segmentation"}],"language":["eng"],"person":[{"role":"aut","given":"Dmitrij","family":"Sitenko","display":"Sitenko, Dmitrij"},{"given":"Bastian","role":"aut","display":"Boll, Bastian","family":"Boll"},{"role":"aut","given":"Christoph","family":"Schnörr","display":"Schnörr, Christoph"}]} 
SRT |a SITENKODMIASSIGNMENT3202