Stratified formal deformations and intersection homology of data point clouds

Intersection homology is a topological invariant which detects finer information in a space than ordinary homology. Using ideas from classical simple homotopy theory, we construct local combinatorial transformations on simplicial complexes under which intersection homology remains invariant. In part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Banagl, Markus (VerfasserIn) , Mäder, Tim (VerfasserIn) , Sadlo, Filip (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 25 May 2020
In: Arxiv
Year: 2020, Pages: 1-22
DOI:10.48550/arXiv.2005.11985
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2005.11985
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2005.11985
Volltext
Verfasserangaben:Markus Banagl, Tim Mäder, and Filip Sadlo
Beschreibung
Zusammenfassung:Intersection homology is a topological invariant which detects finer information in a space than ordinary homology. Using ideas from classical simple homotopy theory, we construct local combinatorial transformations on simplicial complexes under which intersection homology remains invariant. In particular, we obtain the notions of stratified formal deformations and stratified spines of a complex, leading to reductions of complexes prior to computation of intersection homology. We implemented the algorithmic execution of such transformations, as well as the calculation of intersection homology, and apply these algorithms to investigate the intersection homology of stratified spines in Vietoris-Rips type complexes associated to point sets sampled near given, possibly singular, spaces.
Beschreibung:Gesehen am 06.10.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2005.11985