Simulating gauge theories on Lefschetz thimbles

Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $\beta$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pawlowski, Jan M. (VerfasserIn) , Scherzer, Manuel (VerfasserIn) , Schmidt, Christian F. (VerfasserIn) , Ziegler, Felix P. G. (VerfasserIn) , Ziesché, Felix (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 27 Jan 2020
In: Arxiv
Year: 2020, Pages: 1-7
DOI:10.48550/arXiv.2001.09767
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2001.09767
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2001.09767
Volltext
Verfasserangaben:Jan M. Pawlowski, Manuel Scherzer, Christian Schmidt, Felix P.G. Ziegler, Felix Ziesché
Beschreibung
Zusammenfassung:Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $\beta$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the theory on the union of the tangential manifolds to the thimbles. We construct a local Metropolis-type algorithm, that is constrained to a specific tangential manifold. We also discuss how, starting from this result, successive subleading tangential manifolds can be taken into account via a reweighting approach. We demonstrate the algorithm on $U(1)$ gauge theory in 1+1 dimensions and investigate the residual sign problem.
Beschreibung:Gesehen am 07.10.2022
Beschreibung:Online Resource
DOI:10.48550/arXiv.2001.09767