Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles
Given a generic stable strongly parabolic SL(2,C)-Higgs bundle (E,φ), we describe the family of harmonic metrics ht for the ray of Higgs bundles (E,tφ)t≥ 0 by perturbing from an explicitly constructed family of approximate solutions htapp. We then describe the natural hyperkähler metric on M$\mathc...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
08 May 2022
|
| In: |
Journal of the London Mathematical Society
Year: 2022, Jahrgang: 106, Heft: 2, Pages: 590-661 |
| ISSN: | 1469-7750 |
| DOI: | 10.1112/jlms.12581 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1112/jlms.12581 Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12581 |
| Verfasserangaben: | Laura Fredrickson, Rafe Mazzeo, Jan Swoboda, Hartmut Weiss |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818217198 | ||
| 003 | DE-627 | ||
| 005 | 20240202071725.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221007s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1112/jlms.12581 |2 doi | |
| 035 | |a (DE-627)1818217198 | ||
| 035 | |a (DE-599)KXP1818217198 | ||
| 035 | |a (OCoLC)1361695973 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Fredrickson, Laura |e VerfasserIn |0 (DE-588)1269734911 |0 (DE-627)1818240149 |4 aut | |
| 245 | 1 | 0 | |a Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles |c Laura Fredrickson, Rafe Mazzeo, Jan Swoboda, Hartmut Weiss |
| 264 | 1 | |c 08 May 2022 | |
| 300 | |a 72 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.10.2022 | ||
| 520 | |a Given a generic stable strongly parabolic SL(2,C)-Higgs bundle (E,φ), we describe the family of harmonic metrics ht for the ray of Higgs bundles (E,tφ)t≥ 0 by perturbing from an explicitly constructed family of approximate solutions htapp. We then describe the natural hyperkähler metric on M$\mathcal M$ by comparing it to a simpler ‘semiflat’ hyperkähler metric. We prove that gL2−gsf=O(e−γt) along a generic ray, proving a version of Gaiotto-Moore-Neitzke's conjecture. Our results extend to weakly parabolic SL(2,C)-Higgs bundles as well. A centerpiece of this paper is our explicit description of the moduli space and its L2 metric for the case of the four-punctured sphere. We prove that the hyperkähler manifold in this case is a gravitational instanton of type ALG and that its rate of exponential decay to the semiflat metric is the conjectured optimal one, γ=4L, where L is the length of the shortest geodesic on the base curve measured in the singular flat metric |detφ|. | ||
| 700 | 1 | |a Mazzeo, Rafe |d 1961- |e VerfasserIn |0 (DE-588)1035781999 |0 (DE-627)749559209 |0 (DE-576)383534739 |4 aut | |
| 700 | 1 | |a Swoboda, Jan |d 1979- |e VerfasserIn |0 (DE-588)1206608919 |0 (DE-627)1692702947 |4 aut | |
| 700 | 1 | |a Weiß, Hartmut |e VerfasserIn |0 (DE-588)1081798912 |0 (DE-627)846684268 |0 (DE-576)454568479 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a London Mathematical Society |t Journal of the London Mathematical Society |d Oxford : Wiley, 1926 |g 106(2022), 2, Seite 590-661 |h Online-Ressource |w (DE-627)270126953 |w (DE-600)1476428-3 |w (DE-576)078129079 |x 1469-7750 |7 nnas |
| 773 | 1 | 8 | |g volume:106 |g year:2022 |g number:2 |g pages:590-661 |g extent:72 |a Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles |
| 856 | 4 | 0 | |u https://doi.org/10.1112/jlms.12581 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12581 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221007 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1206608919 |a Swoboda, Jan |m 1206608919:Swoboda, Jan |d 110000 |e 110000PS1206608919 |k 0/110000/ |p 3 | ||
| 999 | |a KXP-PPN1818217198 |e 4195105560 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Laura Fredrickson, Rafe Mazzeo, Jan Swoboda, Hartmut Weiss"]},"origin":[{"dateIssuedDisp":"08 May 2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1112/jlms.12581"],"eki":["1818217198"]},"physDesc":[{"extent":"72 S."}],"relHost":[{"part":{"extent":"72","volume":"106","text":"106(2022), 2, Seite 590-661","issue":"2","pages":"590-661","year":"2022"},"pubHistory":["1.1926 -"],"corporate":[{"role":"aut","display":"London Mathematical Society","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"270126953","note":["Gesehen am 16.08.17"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"London Mathematical SocietyJournal of the London Mathematical Society","title":[{"title_sort":"Journal of the London Mathematical Society","title":"Journal of the London Mathematical Society"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"doi":["10.1112/(ISSN)1469-7750"],"eki":["270126953"],"zdb":["1476428-3"],"issn":["1469-7750"]},"origin":[{"dateIssuedDisp":"1926-","publisher":"Wiley ; Cambridge Univ. Press ; Oxford University Press","dateIssuedKey":"1926","publisherPlace":"Oxford ; Cambridge ; Oxford"}]}],"person":[{"role":"aut","display":"Fredrickson, Laura","roleDisplay":"VerfasserIn","given":"Laura","family":"Fredrickson"},{"family":"Mazzeo","given":"Rafe","display":"Mazzeo, Rafe","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Swoboda, Jan","given":"Jan","family":"Swoboda"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Weiß, Hartmut","given":"Hartmut","family":"Weiß"}],"title":[{"title_sort":"Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles","title":"Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles"}],"note":["Gesehen am 07.10.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1818217198","language":["eng"]} | ||
| SRT | |a FREDRICKSOASYMPTOTIC0820 | ||