Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles

Given a generic stable strongly parabolic SL(2,C)-Higgs bundle (E,φ), we describe the family of harmonic metrics ht for the ray of Higgs bundles (E,tφ)t≥ 0 by perturbing from an explicitly constructed family of approximate solutions htapp. We then describe the natural hyperkähler metric on M$\mathc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fredrickson, Laura (VerfasserIn) , Mazzeo, Rafe (VerfasserIn) , Swoboda, Jan (VerfasserIn) , Weiß, Hartmut (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 May 2022
In: Journal of the London Mathematical Society
Year: 2022, Jahrgang: 106, Heft: 2, Pages: 590-661
ISSN:1469-7750
DOI:10.1112/jlms.12581
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1112/jlms.12581
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12581
Volltext
Verfasserangaben:Laura Fredrickson, Rafe Mazzeo, Jan Swoboda, Hartmut Weiss

MARC

LEADER 00000caa a2200000 c 4500
001 1818217198
003 DE-627
005 20240202071725.0
007 cr uuu---uuuuu
008 221007s2022 xx |||||o 00| ||eng c
024 7 |a 10.1112/jlms.12581  |2 doi 
035 |a (DE-627)1818217198 
035 |a (DE-599)KXP1818217198 
035 |a (OCoLC)1361695973 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Fredrickson, Laura  |e VerfasserIn  |0 (DE-588)1269734911  |0 (DE-627)1818240149  |4 aut 
245 1 0 |a Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles  |c Laura Fredrickson, Rafe Mazzeo, Jan Swoboda, Hartmut Weiss 
264 1 |c 08 May 2022 
300 |a 72 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.10.2022 
520 |a Given a generic stable strongly parabolic SL(2,C)-Higgs bundle (E,φ), we describe the family of harmonic metrics ht for the ray of Higgs bundles (E,tφ)t≥ 0 by perturbing from an explicitly constructed family of approximate solutions htapp. We then describe the natural hyperkähler metric on M$\mathcal M$ by comparing it to a simpler ‘semiflat’ hyperkähler metric. We prove that gL2−gsf=O(e−γt) along a generic ray, proving a version of Gaiotto-Moore-Neitzke's conjecture. Our results extend to weakly parabolic SL(2,C)-Higgs bundles as well. A centerpiece of this paper is our explicit description of the moduli space and its L2 metric for the case of the four-punctured sphere. We prove that the hyperkähler manifold in this case is a gravitational instanton of type ALG and that its rate of exponential decay to the semiflat metric is the conjectured optimal one, γ=4L, where L is the length of the shortest geodesic on the base curve measured in the singular flat metric |detφ|. 
700 1 |a Mazzeo, Rafe  |d 1961-  |e VerfasserIn  |0 (DE-588)1035781999  |0 (DE-627)749559209  |0 (DE-576)383534739  |4 aut 
700 1 |a Swoboda, Jan  |d 1979-  |e VerfasserIn  |0 (DE-588)1206608919  |0 (DE-627)1692702947  |4 aut 
700 1 |a Weiß, Hartmut  |e VerfasserIn  |0 (DE-588)1081798912  |0 (DE-627)846684268  |0 (DE-576)454568479  |4 aut 
773 0 8 |i Enthalten in  |a London Mathematical Society  |t Journal of the London Mathematical Society  |d Oxford : Wiley, 1926  |g 106(2022), 2, Seite 590-661  |h Online-Ressource  |w (DE-627)270126953  |w (DE-600)1476428-3  |w (DE-576)078129079  |x 1469-7750  |7 nnas 
773 1 8 |g volume:106  |g year:2022  |g number:2  |g pages:590-661  |g extent:72  |a Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles 
856 4 0 |u https://doi.org/10.1112/jlms.12581  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12581  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221007 
993 |a Article 
994 |a 2022 
998 |g 1206608919  |a Swoboda, Jan  |m 1206608919:Swoboda, Jan  |d 110000  |e 110000PS1206608919  |k 0/110000/  |p 3 
999 |a KXP-PPN1818217198  |e 4195105560 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Laura Fredrickson, Rafe Mazzeo, Jan Swoboda, Hartmut Weiss"]},"origin":[{"dateIssuedDisp":"08 May 2022","dateIssuedKey":"2022"}],"id":{"doi":["10.1112/jlms.12581"],"eki":["1818217198"]},"physDesc":[{"extent":"72 S."}],"relHost":[{"part":{"extent":"72","volume":"106","text":"106(2022), 2, Seite 590-661","issue":"2","pages":"590-661","year":"2022"},"pubHistory":["1.1926 -"],"corporate":[{"role":"aut","display":"London Mathematical Society","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"270126953","note":["Gesehen am 16.08.17"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"London Mathematical SocietyJournal of the London Mathematical Society","title":[{"title_sort":"Journal of the London Mathematical Society","title":"Journal of the London Mathematical Society"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"doi":["10.1112/(ISSN)1469-7750"],"eki":["270126953"],"zdb":["1476428-3"],"issn":["1469-7750"]},"origin":[{"dateIssuedDisp":"1926-","publisher":"Wiley ; Cambridge Univ. Press ; Oxford University Press","dateIssuedKey":"1926","publisherPlace":"Oxford ; Cambridge ; Oxford"}]}],"person":[{"role":"aut","display":"Fredrickson, Laura","roleDisplay":"VerfasserIn","given":"Laura","family":"Fredrickson"},{"family":"Mazzeo","given":"Rafe","display":"Mazzeo, Rafe","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Swoboda, Jan","given":"Jan","family":"Swoboda"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Weiß, Hartmut","given":"Hartmut","family":"Weiß"}],"title":[{"title_sort":"Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles","title":"Asymptotic geometry of the moduli space of parabolic SL(2,C)-Higgs bundles"}],"note":["Gesehen am 07.10.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1818217198","language":["eng"]} 
SRT |a FREDRICKSOASYMPTOTIC0820