Anosov representations with Lipschitz limit set
We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting h...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
14 Jan 2021
|
| Edition: | Version v3 |
| In: |
Arxiv
Year: 2021, Pages: 1-44 |
| DOI: | 10.48550/arXiv.1910.06627 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.1910.06627 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1910.06627 |
| Author Notes: | Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818271559 | ||
| 003 | DE-627 | ||
| 005 | 20240110105928.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221010s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.1910.06627 |2 doi | |
| 035 | |a (DE-627)1818271559 | ||
| 035 | |a (DE-599)KXP1818271559 | ||
| 035 | |a (OCoLC)1361714126 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Pozzetti, Maria Beatrice |d 1987- |e VerfasserIn |0 (DE-588)1138212202 |0 (DE-627)895519631 |0 (DE-576)492391424 |4 aut | |
| 245 | 1 | 0 | |a Anosov representations with Lipschitz limit set |c Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard |
| 250 | |a Version v3 | ||
| 264 | 1 | |c 14 Jan 2021 | |
| 300 | |a 44 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht am 15. Oktober 2019, Version 2 am 4. Dezember 2019, Version 3 am 14. Januar 2021 | ||
| 500 | |a Gesehen am 10.10.2022 | ||
| 520 | |a We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting higher rank representations, including $\Theta$-positive representations, belong to this class, and establish several applications to rigidity results on the orbit growth rate in the symmetric space. | ||
| 650 | 4 | |a Mathematics - Differential Geometry | |
| 650 | 4 | |a Mathematics - Dynamical Systems | |
| 650 | 4 | |a Mathematics - Group Theory | |
| 700 | 1 | |a Sambarino, Andrés |d 1984- |e VerfasserIn |0 (DE-588)1177719940 |0 (DE-627)1048874028 |0 (DE-576)517446383 |4 aut | |
| 700 | 1 | |a Wienhard, Anna |d 1977- |e VerfasserIn |0 (DE-588)137817975 |0 (DE-627)696086891 |0 (DE-576)305331280 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2021), Artikel-ID 1910.06627, Seite 1-44 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Anosov representations with Lipschitz limit set |
| 773 | 1 | 8 | |g year:2021 |g elocationid:1910.06627 |g pages:1-44 |g extent:44 |a Anosov representations with Lipschitz limit set |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.1910.06627 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1910.06627 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221010 | ||
| 993 | |a Article | ||
| 998 | |g 137817975 |a Wienhard, Anna |m 137817975:Wienhard, Anna |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PW137817975 |e 110100PW137817975 |e 110000PW137817975 |e 110400PW137817975 |e 700000PW137817975 |e 728500PW137817975 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 998 | |g 1138212202 |a Pozzetti, Maria Beatrice |m 1138212202:Pozzetti, Maria Beatrice |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PP1138212202 |e 110100PP1138212202 |e 110000PP1138212202 |e 110400PP1138212202 |e 700000PP1138212202 |e 728500PP1138212202 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1818271559 |e 4195459397 | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title":"Anosov representations with Lipschitz limit set","title_sort":"Anosov representations with Lipschitz limit set"}],"origin":[{"dateIssuedDisp":"14 Jan 2021","dateIssuedKey":"2021","edition":"Version v3"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Online veröffentlicht am 15. Oktober 2019, Version 2 am 4. Dezember 2019, Version 3 am 14. Januar 2021","Gesehen am 10.10.2022"],"relHost":[{"id":{"zdb":["2225896-6"],"eki":["509006531"]},"disp":"Anosov representations with Lipschitz limit setArxiv","language":["eng"],"recId":"509006531","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"part":{"pages":"1-44","year":"2021","extent":"44","text":"(2021), Artikel-ID 1910.06627, Seite 1-44"},"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"],"pubHistory":["1991 -"],"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"44 S."}],"name":{"displayForm":["Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard"]},"person":[{"display":"Pozzetti, Maria Beatrice","roleDisplay":"VerfasserIn","given":"Maria Beatrice","role":"aut","family":"Pozzetti"},{"family":"Sambarino","role":"aut","given":"Andrés","roleDisplay":"VerfasserIn","display":"Sambarino, Andrés"},{"given":"Anna","roleDisplay":"VerfasserIn","display":"Wienhard, Anna","family":"Wienhard","role":"aut"}],"recId":"1818271559","id":{"doi":["10.48550/arXiv.1910.06627"],"eki":["1818271559"]},"language":["eng"]} | ||
| SRT | |a POZZETTIMAANOSOVREPR1420 | ||