Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies

A main theoretical interest in biology and physics is to identify the nonlinear dynamical system (DS) that generated observed time series. Recurrent Neural Networks (RNNs) are, in principle, powerful enough to approximate any underlying DS, but in their vanilla form suffer from the exploding vs. van...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmidt, Dominik (VerfasserIn) , Koppe, Georgia (VerfasserIn) , Monfared, Zahra (VerfasserIn) , Beutelspacher, Max (VerfasserIn) , Durstewitz, Daniel (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 12 Mar 2021
Ausgabe:Version v3
In: Arxiv
Year: 2021, Pages: 1-29
DOI:10.48550/arXiv.1910.03471
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.1910.03471
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1910.03471
Volltext
Verfasserangaben:Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, Daniel Durstewitz

MARC

LEADER 00000caa a2200000 c 4500
001 1818272873
003 DE-627
005 20240110111247.0
007 cr uuu---uuuuu
008 221010s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.1910.03471  |2 doi 
035 |a (DE-627)1818272873 
035 |a (DE-599)KXP1818272873 
035 |a (OCoLC)1361714125 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Schmidt, Dominik  |e VerfasserIn  |0 (DE-588)1218815337  |0 (DE-627)1734538120  |4 aut 
245 1 0 |a Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies  |c Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, Daniel Durstewitz 
250 |a Version v3 
264 1 |c 12 Mar 2021 
300 |b Illustrationen 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht am 8. Oktober 2019, Version 2 am 19. Juni 2020, Version 3 am 12. März 2021 
500 |a Gesehen am 10.01.2024 
520 |a A main theoretical interest in biology and physics is to identify the nonlinear dynamical system (DS) that generated observed time series. Recurrent Neural Networks (RNNs) are, in principle, powerful enough to approximate any underlying DS, but in their vanilla form suffer from the exploding vs. vanishing gradients problem. Previous attempts to alleviate this problem resulted either in more complicated, mathematically less tractable RNN architectures, or strongly limited the dynamical expressiveness of the RNN. Here we address this issue by suggesting a simple regularization scheme for vanilla RNNs with ReLU activation which enables them to solve long-range dependency problems and express slow time scales, while retaining a simple mathematical structure which makes their DS properties partly analytically accessible. We prove two theorems that establish a tight connection between the regularized RNN dynamics and its gradients, illustrate on DS benchmarks that our regularization approach strongly eases the reconstruction of DS which harbor widely differing time scales, and show that our method is also en par with other long-range architectures like LSTMs on several tasks. 
650 4 |a Computer Science - Machine Learning 
650 4 |a Quantitative Biology - Quantitative Methods 
650 4 |a Statistics - Machine Learning 
700 1 |a Koppe, Georgia  |d 1984-  |e VerfasserIn  |0 (DE-588)1095801198  |0 (DE-627)856418498  |0 (DE-576)467814724  |4 aut 
700 1 |a Monfared, Zahra  |e VerfasserIn  |0 (DE-588)1268472905  |0 (DE-627)1817003658  |4 aut 
700 1 |a Beutelspacher, Max  |e VerfasserIn  |4 aut 
700 1 |a Durstewitz, Daniel  |d 1967-  |e VerfasserIn  |0 (DE-588)12042021X  |0 (DE-627)080664008  |0 (DE-576)174757050  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 1910.03471, Seite 1-29  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies 
773 1 8 |g year:2021  |g elocationid:1910.03471  |g pages:1-29  |g extent:29  |a Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies 
856 4 0 |u https://doi.org/10.48550/arXiv.1910.03471  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/1910.03471  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221010 
993 |a ConferencePaper 
994 |a 2021 
998 |g 12042021X  |a Durstewitz, Daniel  |m 12042021X:Durstewitz, Daniel  |d 130000  |d 700000  |d 728500  |e 130000PD12042021X  |e 700000PD12042021X  |e 728500PD12042021X  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 5  |y j 
998 |g 1268472905  |a Monfared, Zahra  |m 1268472905:Monfared, Zahra  |d 700000  |d 728500  |e 700000PM1268472905  |e 728500PM1268472905  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 1095801198  |a Koppe, Georgia  |m 1095801198:Koppe, Georgia  |d 60000  |e 60000PK1095801198  |k 0/60000/  |p 2 
999 |a KXP-PPN1818272873  |e 4195462053 
BIB |a Y 
JSO |a {"recId":"1818272873","origin":[{"dateIssuedDisp":"12 Mar 2021","edition":"Version v3","dateIssuedKey":"2021"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"physDesc":[{"noteIll":"Illustrationen","extent":"29 S."}],"id":{"eki":["1818272873"],"doi":["10.48550/arXiv.1910.03471"]},"relHost":[{"pubHistory":["1991 -"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"language":["eng"],"part":{"pages":"1-29","extent":"29","text":"(2021), Artikel-ID 1910.03471, Seite 1-29","year":"2021"},"disp":"Identifying nonlinear dynamical systems with multiple time scales and long-range dependenciesArxiv","id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 28.05.2024"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"recId":"509006531"}],"note":["Online veröffentlicht am 8. Oktober 2019, Version 2 am 19. Juni 2020, Version 3 am 12. März 2021","Gesehen am 10.01.2024"],"name":{"displayForm":["Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, Daniel Durstewitz"]},"person":[{"role":"aut","given":"Dominik","display":"Schmidt, Dominik","family":"Schmidt"},{"display":"Koppe, Georgia","role":"aut","given":"Georgia","family":"Koppe"},{"given":"Zahra","role":"aut","display":"Monfared, Zahra","family":"Monfared"},{"family":"Beutelspacher","role":"aut","given":"Max","display":"Beutelspacher, Max"},{"role":"aut","given":"Daniel","display":"Durstewitz, Daniel","family":"Durstewitz"}],"title":[{"title_sort":"Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies","title":"Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies"}],"language":["eng"]} 
SRT |a SCHMIDTDOMIDENTIFYIN1220