Extensions of Karger's algorithm: why they fail in theory and how they are useful in practice

The minimum graph cut and minimum s-t-cut problems are important primitives in the modeling of combinatorial problems in computer science, including in computer vision and machine learning. Some of the most efficient algorithms for finding global minimum cuts are randomized algorithms based on Karge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jenner, Erik (VerfasserIn) , Fita Sanmartín, Enrique (VerfasserIn) , Hamprecht, Fred (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 16 Dec 2021
Ausgabe:Version v2
In: Arxiv
Year: 2021, Pages: 1-19
DOI:10.48550/arXiv.2110.02750
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2110.02750
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2110.02750
Volltext
Verfasserangaben:Erik Jenner, Enrique Fita Sanmartín, Fred A. Hamprecht

MARC

LEADER 00000caa a2200000 c 4500
001 181834968X
003 DE-627
005 20240110133805.0
007 cr uuu---uuuuu
008 221010s2021 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2110.02750  |2 doi 
035 |a (DE-627)181834968X 
035 |a (DE-599)KXP181834968X 
035 |a (OCoLC)1361713944 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Jenner, Erik  |e VerfasserIn  |0 (DE-588)1315529998  |0 (DE-627)1877647756  |4 aut 
245 1 0 |a Extensions of Karger's algorithm  |b why they fail in theory and how they are useful in practice  |c Erik Jenner, Enrique Fita Sanmartín, Fred A. Hamprecht 
246 3 0 |a Karger 
250 |a Version v2 
264 1 |c 16 Dec 2021 
300 |b Illustrationen 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht am 5. Oktober 2021 
500 |a Gesehen am 10.01.2024 
520 |a The minimum graph cut and minimum s-t-cut problems are important primitives in the modeling of combinatorial problems in computer science, including in computer vision and machine learning. Some of the most efficient algorithms for finding global minimum cuts are randomized algorithms based on Karger’s groundbreaking contraction algorithm. Here, we study whether Karger’s algorithm can be successfully generalized to other cut problems. We first prove that a wide class of natural generalizations of Karger’s algorithm cannot efficiently solve the s-t-mincut or the normalized cut problem to optimality. However, we then present a simple new algorithm for seeded segmentation / graph-based semisupervised learning that is closely based on Karger’s original algorithm, showing that for these problems, extensions of Karger’s algorithm can be useful. ... 
650 4 |a Computer Science - Computer Vision and Pattern Recognition 
650 4 |a Computer Science - Data Structures and Algorithms 
650 4 |a Computer Science - Machine Learning 
650 4 |a Statistics - Machine Learning 
700 1 |a Fita Sanmartín, Enrique  |d 1994-  |e VerfasserIn  |0 (DE-588)1262514363  |0 (DE-627)1810211522  |4 aut 
700 1 |a Hamprecht, Fred  |e VerfasserIn  |0 (DE-588)1020505605  |0 (DE-627)691240280  |0 (DE-576)360605516  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2021), Artikel-ID 2110.02750, Seite 1-19  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Extensions of Karger's algorithm why they fail in theory and how they are useful in practice 
773 1 8 |g year:2021  |g elocationid:2110.02750  |g pages:1-19  |g extent:19  |a Extensions of Karger's algorithm why they fail in theory and how they are useful in practice 
856 4 0 |u https://doi.org/10.48550/arXiv.2110.02750  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2110.02750  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221010 
993 |a Article 
994 |a 2021 
998 |g 1020505605  |a Hamprecht, Fred  |m 1020505605:Hamprecht, Fred  |d 700000  |d 708070  |d 700000  |d 728500  |e 700000PH1020505605  |e 708070PH1020505605  |e 700000PH1020505605  |e 728500PH1020505605  |k 0/700000/  |k 1/700000/708070/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
998 |g 1262514363  |a Fita Sanmartín, Enrique  |m 1262514363:Fita Sanmartín, Enrique  |d 700000  |d 728500  |e 700000PF1262514363  |e 728500PF1262514363  |k 0/700000/  |k 1/700000/728500/  |p 2 
999 |a KXP-PPN181834968X  |e 4195519918 
BIB |a Y 
JSO |a {"person":[{"display":"Jenner, Erik","family":"Jenner","role":"aut","given":"Erik"},{"family":"Fita Sanmartín","display":"Fita Sanmartín, Enrique","role":"aut","given":"Enrique"},{"role":"aut","given":"Fred","family":"Hamprecht","display":"Hamprecht, Fred"}],"language":["eng"],"note":["Online veröffentlicht am 5. Oktober 2021","Gesehen am 10.01.2024"],"title":[{"title":"Extensions of Karger's algorithm","subtitle":"why they fail in theory and how they are useful in practice","title_sort":"Extensions of Karger's algorithm"}],"origin":[{"dateIssuedDisp":"16 Dec 2021","edition":"Version v2","dateIssuedKey":"2021"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"181834968X","physDesc":[{"extent":"19 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Erik Jenner, Enrique Fita Sanmartín, Fred A. Hamprecht"]},"id":{"eki":["181834968X"],"doi":["10.48550/arXiv.2110.02750"]},"relHost":[{"disp":"Extensions of Karger's algorithm why they fail in theory and how they are useful in practiceArxiv","language":["eng"],"part":{"text":"(2021), Artikel-ID 2110.02750, Seite 1-19","pages":"1-19","year":"2021","extent":"19"},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"note":["Gesehen am 28.05.2024"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","pubHistory":["1991 -"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]}}]} 
SRT |a JENNERERIKEXTENSIONS1620