Splice diagram determining singularity links and universal abelian covers

To a rational homology sphere graph manifold one can associate a weighted tree invariant called splice diagram. In this article we prove a sufficient numerical condition on the splice diagram for a graph manifold to be a singularity link. We also show that if two manifolds have the same splice diagr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pedersen, Helge Møller (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2011
In: Geometriae dedicata
Year: 2011, Jahrgang: 150, Heft: 1, Pages: 75-104
ISSN:1572-9168
DOI:10.1007/s10711-010-9495-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10711-010-9495-6
Volltext
Verfasserangaben:Helge Møller Pedersen
Beschreibung
Zusammenfassung:To a rational homology sphere graph manifold one can associate a weighted tree invariant called splice diagram. In this article we prove a sufficient numerical condition on the splice diagram for a graph manifold to be a singularity link. We also show that if two manifolds have the same splice diagram, then their universal abelian covers are homeomorphic. To prove the last theorem we have to generalize our notions to orbifolds.
Beschreibung:Published: 20 April 2010
Gesehen am 11.10.2022
Beschreibung:Online Resource
ISSN:1572-9168
DOI:10.1007/s10711-010-9495-6