On (global) unique continuation properties of the fractional discrete laplacian
We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
6 Feb 2022
|
| In: |
Arxiv
Year: 2022, Pages: 1-41 |
| DOI: | 10.48550/arXiv.2202.02724 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2202.02724 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2202.02724 |
| Verfasserangaben: | Aingeru Fernández-Bertolin, Luz Roncal, and Angkana Rüland |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818785056 | ||
| 003 | DE-627 | ||
| 005 | 20240111084716.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221012s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2202.02724 |2 doi | |
| 035 | |a (DE-627)1818785056 | ||
| 035 | |a (DE-599)KXP1818785056 | ||
| 035 | |a (OCoLC)1361695795 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Fernández-Bertolin, Aingeru |d 1988- |e VerfasserIn |0 (DE-588)1234193787 |0 (DE-627)1759087173 |4 aut | |
| 245 | 1 | 0 | |a On (global) unique continuation properties of the fractional discrete laplacian |c Aingeru Fernández-Bertolin, Luz Roncal, and Angkana Rüland |
| 264 | 1 | |c 6 Feb 2022 | |
| 300 | |b Illustrationen | ||
| 300 | |a 41 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 11.01.2024 | ||
| 520 | |a We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does not enjoy these in general. While discretization thus counteracts the strong rigidity properties of the continuum fractional Laplacian, by discussing quantitative forms of unique continuation, we illustrate that these properties can be recovered if exponentially small (in the lattice size) correction terms are added. This in particular allows us to deduce uniform stability properties for a discrete, linear inverse problem for the fractional Laplacian. We complement these observations with a transference principle and the discussion of these properties on the discrete torus. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Roncal, Luz |e VerfasserIn |0 (DE-588)113785779X |0 (DE-627)895133164 |0 (DE-576)491776039 |4 aut | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2022), Artikel-ID 2202.02724, Seite 1-41 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a On (global) unique continuation properties of the fractional discrete laplacian |
| 773 | 1 | 8 | |g year:2022 |g elocationid:2202.02724 |g pages:1-41 |g extent:41 |a On (global) unique continuation properties of the fractional discrete laplacian |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2202.02724 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2202.02724 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221012 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |d 110000 |d 110200 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PR1051987679 |e 110200PR1051987679 |e 110000PR1051987679 |e 110400PR1051987679 |e 700000PR1051987679 |e 728500PR1051987679 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 3 |y j | ||
| 999 | |a KXP-PPN1818785056 |e 4196436528 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"disp":"On (global) unique continuation properties of the fractional discrete laplacianArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"year":"2022","pages":"1-41","text":"(2022), Artikel-ID 2202.02724, Seite 1-41","extent":"41"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}]}],"physDesc":[{"extent":"41 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Aingeru Fernández-Bertolin, Luz Roncal, and Angkana Rüland"]},"id":{"doi":["10.48550/arXiv.2202.02724"],"eki":["1818785056"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"6 Feb 2022"}],"recId":"1818785056","language":["eng"],"note":["Gesehen am 11.01.2024"],"type":{"bibl":"chapter","media":"Online-Ressource"},"person":[{"given":"Aingeru","family":"Fernández-Bertolin","role":"aut","display":"Fernández-Bertolin, Aingeru","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Roncal, Luz","given":"Luz","family":"Roncal"},{"display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut","family":"Rüland","given":"Angkana"}],"title":[{"title":"On (global) unique continuation properties of the fractional discrete laplacian","title_sort":"On (global) unique continuation properties of the fractional discrete laplacian"}]} | ||
| SRT | |a FERNANDEZBONGLOBALUN6202 | ||