On (global) unique continuation properties of the fractional discrete laplacian

We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fernández-Bertolin, Aingeru (VerfasserIn) , Roncal, Luz (VerfasserIn) , Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 6 Feb 2022
In: Arxiv
Year: 2022, Pages: 1-41
DOI:10.48550/arXiv.2202.02724
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2202.02724
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2202.02724
Volltext
Verfasserangaben:Aingeru Fernández-Bertolin, Luz Roncal, and Angkana Rüland

MARC

LEADER 00000caa a2200000 c 4500
001 1818785056
003 DE-627
005 20240111084716.0
007 cr uuu---uuuuu
008 221012s2022 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2202.02724  |2 doi 
035 |a (DE-627)1818785056 
035 |a (DE-599)KXP1818785056 
035 |a (OCoLC)1361695795 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Fernández-Bertolin, Aingeru  |d 1988-  |e VerfasserIn  |0 (DE-588)1234193787  |0 (DE-627)1759087173  |4 aut 
245 1 0 |a On (global) unique continuation properties of the fractional discrete laplacian  |c Aingeru Fernández-Bertolin, Luz Roncal, and Angkana Rüland 
264 1 |c 6 Feb 2022 
300 |b Illustrationen 
300 |a 41 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.01.2024 
520 |a We study various qualitative and quantitative (global) unique continuation properties for the fractional discrete Laplacian. We show that while the fractional Laplacian enjoys striking rigidity properties in the form of (global) unique continuation properties, the fractional discrete Laplacian does not enjoy these in general. While discretization thus counteracts the strong rigidity properties of the continuum fractional Laplacian, by discussing quantitative forms of unique continuation, we illustrate that these properties can be recovered if exponentially small (in the lattice size) correction terms are added. This in particular allows us to deduce uniform stability properties for a discrete, linear inverse problem for the fractional Laplacian. We complement these observations with a transference principle and the discussion of these properties on the discrete torus. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Roncal, Luz  |e VerfasserIn  |0 (DE-588)113785779X  |0 (DE-627)895133164  |0 (DE-576)491776039  |4 aut 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2022), Artikel-ID 2202.02724, Seite 1-41  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a On (global) unique continuation properties of the fractional discrete laplacian 
773 1 8 |g year:2022  |g elocationid:2202.02724  |g pages:1-41  |g extent:41  |a On (global) unique continuation properties of the fractional discrete laplacian 
856 4 0 |u https://doi.org/10.48550/arXiv.2202.02724  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2202.02724  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221012 
993 |a Article 
994 |a 2022 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PR1051987679  |e 110200PR1051987679  |e 110000PR1051987679  |e 110400PR1051987679  |e 700000PR1051987679  |e 728500PR1051987679  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 3  |y j 
999 |a KXP-PPN1818785056  |e 4196436528 
BIB |a Y 
JSO |a {"relHost":[{"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"disp":"On (global) unique continuation properties of the fractional discrete laplacianArxiv","type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"year":"2022","pages":"1-41","text":"(2022), Artikel-ID 2202.02724, Seite 1-41","extent":"41"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}]}],"physDesc":[{"extent":"41 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Aingeru Fernández-Bertolin, Luz Roncal, and Angkana Rüland"]},"id":{"doi":["10.48550/arXiv.2202.02724"],"eki":["1818785056"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"6 Feb 2022"}],"recId":"1818785056","language":["eng"],"note":["Gesehen am 11.01.2024"],"type":{"bibl":"chapter","media":"Online-Ressource"},"person":[{"given":"Aingeru","family":"Fernández-Bertolin","role":"aut","display":"Fernández-Bertolin, Aingeru","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Roncal, Luz","given":"Luz","family":"Roncal"},{"display":"Rüland, Angkana","roleDisplay":"VerfasserIn","role":"aut","family":"Rüland","given":"Angkana"}],"title":[{"title":"On (global) unique continuation properties of the fractional discrete laplacian","title_sort":"On (global) unique continuation properties of the fractional discrete laplacian"}]} 
SRT |a FERNANDEZBONGLOBALUN6202