ERGO-ML I: inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks

A fundamental prediction of the LambdaCDM cosmology is the hierarchical build-up of structure and therefore the successive merging of galaxies into more massive ones. As one can only observe galaxies at one specific time in cosmic history, this merger history remains in principle unobservable. By us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eisert, Lukas (VerfasserIn) , Pillepich, Annalisa (VerfasserIn) , Nelson, Dylan (VerfasserIn) , Klessen, Ralf S. (VerfasserIn) , Huertas-Company, Marc (VerfasserIn) , Rodriguez-Gomez, Vicente (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 14 Feb 2022
In: Arxiv
Year: 2022, Pages: 1-25
DOI:10.48550/arXiv.2202.06967
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2202.06967
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2202.06967
Volltext
Verfasserangaben:Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf S. Klessen, Marc Huertas-Company and Vicente Rodriguez-Gomez

MARC

LEADER 00000caa a2200000 c 4500
001 1818788357
003 DE-627
005 20230328081224.0
007 cr uuu---uuuuu
008 221012s2022 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2202.06967  |2 doi 
035 |a (DE-627)1818788357 
035 |a (DE-599)KXP1818788357 
035 |a (OCoLC)1361695738 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Eisert, Lukas  |d 1992-  |e VerfasserIn  |0 (DE-588)1273271564  |0 (DE-627)1823036015  |4 aut 
245 1 0 |a ERGO-ML I  |b inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks  |c Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf S. Klessen, Marc Huertas-Company and Vicente Rodriguez-Gomez 
264 1 |c 14 Feb 2022 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.10.2022 
520 |a A fundamental prediction of the LambdaCDM cosmology is the hierarchical build-up of structure and therefore the successive merging of galaxies into more massive ones. As one can only observe galaxies at one specific time in cosmic history, this merger history remains in principle unobservable. By using the TNG100 simulation of the IllustrisTNG project, we show that it is possible to infer the unobservable stellar assembly and merger history of central galaxies from their observable properties by using machine learning techniques. In particular, in this first paper of ERGO-ML (Extracting Reality from Galaxy Observables with Machine Learning), we choose a set of 7 observable integral properties of galaxies (i.e. total stellar mass, redshift, color, stellar size, morphology, metallicity, and age) to infer, from those, the stellar ex-situ fraction, the average merger lookback times and mass ratios, and the lookback time and stellar mass of the last major merger. To do so, we use and compare a Multilayer Perceptron Neural Network and a conditional Invertible Neural Network (cINN): thanks to the latter we are also able to infer the posterior distribution for these parameters and hence estimate the uncertainties in the predictions. We find that the stellar ex-situ fraction and the time of the last major merger are well determined by the selected set of observables, that the mass-weighted merger mass ratio is unconstrained, and that, beyond stellar mass, stellar morphology and stellar age are the most informative properties. Finally, we show that the cINN recovers the remaining unexplained scatter and secondary cross-correlations. Our tools can be applied to large galaxy surveys in order to infer unobservable properties of galaxies' past, enabling empirical studies of galaxy evolution enriched by cosmological simulations. 
650 4 |a Astrophysics - Astrophysics of Galaxies 
700 1 |a Pillepich, Annalisa  |e VerfasserIn  |0 (DE-588)1151829854  |0 (DE-627)1012339327  |0 (DE-576)423800841  |4 aut 
700 1 |a Nelson, Dylan  |e VerfasserIn  |0 (DE-588)115182805X  |0 (DE-627)101233600X  |0 (DE-576)42382581X  |4 aut 
700 1 |a Klessen, Ralf S.  |d 1968-  |e VerfasserIn  |0 (DE-588)120533820  |0 (DE-627)392381532  |0 (DE-576)178685399  |4 aut 
700 1 |a Huertas-Company, Marc  |e VerfasserIn  |0 (DE-588)1198716592  |0 (DE-627)1680888927  |4 aut 
700 1 |a Rodriguez-Gomez, Vicente  |e VerfasserIn  |0 (DE-588)1213043441  |0 (DE-627)1703274164  |0 (DE-576)426836782  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2022), Artikel-ID 2202.06967, Seite 1-25  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a ERGO-ML I inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks 
773 1 8 |g year:2022  |g elocationid:2202.06967  |g pages:1-25  |g extent:25  |a ERGO-ML I inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks 
856 4 0 |u https://doi.org/10.48550/arXiv.2202.06967  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2202.06967  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221012 
993 |a Article 
994 |a 2022 
998 |g 120533820  |a Klessen, Ralf S.  |m 120533820:Klessen, Ralf S.  |d 700000  |d 714000  |d 714200  |d 700000  |d 728500  |e 700000PK120533820  |e 714000PK120533820  |e 714200PK120533820  |e 700000PK120533820  |e 728500PK120533820  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |k 0/700000/  |k 1/700000/728500/  |p 4 
998 |g 115182805X  |a Nelson, Dylan  |m 115182805X:Nelson, Dylan  |d 700000  |d 714000  |d 714200  |d 700000  |d 728500  |e 700000PN115182805X  |e 714000PN115182805X  |e 714200PN115182805X  |e 700000PN115182805X  |e 728500PN115182805X  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 1151829854  |a Pillepich, Annalisa  |m 1151829854:Pillepich, Annalisa  |d 130000  |d 700000  |d 728500  |e 130000PP1151829854  |e 700000PP1151829854  |e 728500PP1151829854  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1273271564  |a Eisert, Lukas  |m 1273271564:Eisert, Lukas  |d 130000  |e 130000PE1273271564  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1818788357  |e 4196443451 
BIB |a Y 
JSO |a {"person":[{"role":"aut","family":"Eisert","given":"Lukas","display":"Eisert, Lukas"},{"family":"Pillepich","role":"aut","given":"Annalisa","display":"Pillepich, Annalisa"},{"display":"Nelson, Dylan","given":"Dylan","role":"aut","family":"Nelson"},{"given":"Ralf S.","display":"Klessen, Ralf S.","role":"aut","family":"Klessen"},{"role":"aut","family":"Huertas-Company","display":"Huertas-Company, Marc","given":"Marc"},{"given":"Vicente","display":"Rodriguez-Gomez, Vicente","family":"Rodriguez-Gomez","role":"aut"}],"recId":"1818788357","note":["Gesehen am 12.10.2022"],"language":["eng"],"name":{"displayForm":["Lukas Eisert, Annalisa Pillepich, Dylan Nelson, Ralf S. Klessen, Marc Huertas-Company and Vicente Rodriguez-Gomez"]},"relHost":[{"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"disp":"ERGO-ML I inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networksArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"],"pubHistory":["1991 -"],"part":{"year":"2022","text":"(2022), Artikel-ID 2202.06967, Seite 1-25","pages":"1-25","extent":"25"},"language":["eng"],"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"recId":"509006531"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"14 Feb 2022"}],"title":[{"title":"ERGO-ML I","subtitle":"inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks","title_sort":"ERGO-ML I"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"id":{"eki":["1818788357"],"doi":["10.48550/arXiv.2202.06967"]},"physDesc":[{"extent":"25 S."}]} 
SRT |a EISERTLUKAERGOMLI1420