Tower gaps in multicolour Ramsey numbers

Resolving a problem of Conlon, Fox, and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their 2-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erd ̋ os-Hajnal stepping-up lemma for a generaliz...

Full description

Saved in:
Bibliographic Details
Main Authors: Dubroff, Quentin (Author) , Girão, António (Author) , Hurley, Eoin (Author) , Yap, Corrine (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 1 Sep 2023
Edition:Version v2
In: Arxiv
Year: 2023, Pages: 1-16
DOI:10.48550/arXiv.2202.14032
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2202.14032
Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2202.14032
Get full text
Author Notes:Quentin Dubroff, António Girão, Eoin Hurley, and Corrine Yap

MARC

LEADER 00000caa a2200000 c 4500
001 1818872021
003 DE-627
005 20240111111953.0
007 cr uuu---uuuuu
008 221013s2023 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2202.14032  |2 doi 
035 |a (DE-627)1818872021 
035 |a (DE-599)KXP1818872021 
035 |a (OCoLC)1361695757 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Dubroff, Quentin  |e VerfasserIn  |0 (DE-588)1315628619  |0 (DE-627)1877903515  |4 aut 
245 1 0 |a Tower gaps in multicolour Ramsey numbers  |c Quentin Dubroff, António Girão, Eoin Hurley, and Corrine Yap 
250 |a Version v2 
264 1 |c 1 Sep 2023 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht am 28. Februar 2022 mit dem Titel "New stepping-up constructions for multicoloured hypergraphs" 
500 |a Gesehen am 11.01.2024 
520 |a Resolving a problem of Conlon, Fox, and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their 2-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erd ̋ os-Hajnal stepping-up lemma for a generalized Ramsey number rk(t; q, p), which we define as the smallest integer n such that every q-colouring of the k-sets on n vertices contains a set of t vertices spanning fewer than p colours. Our results provide the first tower-type lower bounds on these numbers. 
650 4 |a Mathematics - Combinatorics 
700 1 |a Girão, António  |e VerfasserIn  |4 aut 
700 1 |a Hurley, Eoin  |e VerfasserIn  |0 (DE-588)1262519152  |0 (DE-627)1810219523  |4 aut 
700 1 |a Yap, Corrine  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2023), Artikel-ID 2202.14032, Seite 1-16  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Tower gaps in multicolour Ramsey numbers 
773 1 8 |g year:2023  |g elocationid:2202.14032  |g pages:1-16  |g extent:16  |a Tower gaps in multicolour Ramsey numbers 
856 4 0 |u https://doi.org/10.48550/arXiv.2202.14032  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2202.14032  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221013 
993 |a Article 
994 |a 2023 
998 |g 1262519152  |a Hurley, Eoin  |m 1262519152:Hurley, Eoin  |d 110000  |d 110300  |d 700000  |d 728500  |e 110000PH1262519152  |e 110300PH1262519152  |e 700000PH1262519152  |e 728500PH1262519152  |k 0/110000/  |k 1/110000/110300/  |k 0/700000/  |k 1/700000/728500/  |p 3 
999 |a KXP-PPN1818872021  |e 4196749046 
BIB |a Y 
JSO |a {"person":[{"display":"Dubroff, Quentin","roleDisplay":"VerfasserIn","role":"aut","family":"Dubroff","given":"Quentin"},{"role":"aut","display":"Girão, António","roleDisplay":"VerfasserIn","given":"António","family":"Girão"},{"family":"Hurley","given":"Eoin","display":"Hurley, Eoin","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Yap, Corrine","roleDisplay":"VerfasserIn","role":"aut","family":"Yap","given":"Corrine"}],"title":[{"title_sort":"Tower gaps in multicolour Ramsey numbers","title":"Tower gaps in multicolour Ramsey numbers"}],"note":["Online veröffentlicht am 28. Februar 2022 mit dem Titel \"New stepping-up constructions for multicoloured hypergraphs\"","Gesehen am 11.01.2024"],"type":{"bibl":"chapter","media":"Online-Ressource"},"recId":"1818872021","language":["eng"],"name":{"displayForm":["Quentin Dubroff, António Girão, Eoin Hurley, and Corrine Yap"]},"origin":[{"edition":"Version v2","dateIssuedDisp":"1 Sep 2023","dateIssuedKey":"2023"}],"id":{"eki":["1818872021"],"doi":["10.48550/arXiv.2202.14032"]},"physDesc":[{"extent":"16 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"part":{"pages":"1-16","year":"2023","extent":"16","text":"(2023), Artikel-ID 2202.14032, Seite 1-16"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"disp":"Tower gaps in multicolour Ramsey numbersArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"language":["eng"],"recId":"509006531"}]} 
SRT |a DUBROFFQUETOWERGAPSI1202