Tower gaps in multicolour Ramsey numbers
Resolving a problem of Conlon, Fox, and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their 2-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erd ̋ os-Hajnal stepping-up lemma for a generaliz...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
1 Sep 2023
|
| Edition: | Version v2 |
| In: |
Arxiv
Year: 2023, Pages: 1-16 |
| DOI: | 10.48550/arXiv.2202.14032 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.48550/arXiv.2202.14032 Verlag, kostenfrei, Volltext: http://arxiv.org/abs/2202.14032 |
| Author Notes: | Quentin Dubroff, António Girão, Eoin Hurley, and Corrine Yap |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818872021 | ||
| 003 | DE-627 | ||
| 005 | 20240111111953.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221013s2023 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2202.14032 |2 doi | |
| 035 | |a (DE-627)1818872021 | ||
| 035 | |a (DE-599)KXP1818872021 | ||
| 035 | |a (OCoLC)1361695757 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Dubroff, Quentin |e VerfasserIn |0 (DE-588)1315628619 |0 (DE-627)1877903515 |4 aut | |
| 245 | 1 | 0 | |a Tower gaps in multicolour Ramsey numbers |c Quentin Dubroff, António Girão, Eoin Hurley, and Corrine Yap |
| 250 | |a Version v2 | ||
| 264 | 1 | |c 1 Sep 2023 | |
| 300 | |a 16 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht am 28. Februar 2022 mit dem Titel "New stepping-up constructions for multicoloured hypergraphs" | ||
| 500 | |a Gesehen am 11.01.2024 | ||
| 520 | |a Resolving a problem of Conlon, Fox, and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their 2-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erd ̋ os-Hajnal stepping-up lemma for a generalized Ramsey number rk(t; q, p), which we define as the smallest integer n such that every q-colouring of the k-sets on n vertices contains a set of t vertices spanning fewer than p colours. Our results provide the first tower-type lower bounds on these numbers. | ||
| 650 | 4 | |a Mathematics - Combinatorics | |
| 700 | 1 | |a Girão, António |e VerfasserIn |4 aut | |
| 700 | 1 | |a Hurley, Eoin |e VerfasserIn |0 (DE-588)1262519152 |0 (DE-627)1810219523 |4 aut | |
| 700 | 1 | |a Yap, Corrine |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2023), Artikel-ID 2202.14032, Seite 1-16 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Tower gaps in multicolour Ramsey numbers |
| 773 | 1 | 8 | |g year:2023 |g elocationid:2202.14032 |g pages:1-16 |g extent:16 |a Tower gaps in multicolour Ramsey numbers |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2202.14032 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2202.14032 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221013 | ||
| 993 | |a Article | ||
| 994 | |a 2023 | ||
| 998 | |g 1262519152 |a Hurley, Eoin |m 1262519152:Hurley, Eoin |d 110000 |d 110300 |d 700000 |d 728500 |e 110000PH1262519152 |e 110300PH1262519152 |e 700000PH1262519152 |e 728500PH1262519152 |k 0/110000/ |k 1/110000/110300/ |k 0/700000/ |k 1/700000/728500/ |p 3 | ||
| 999 | |a KXP-PPN1818872021 |e 4196749046 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"display":"Dubroff, Quentin","roleDisplay":"VerfasserIn","role":"aut","family":"Dubroff","given":"Quentin"},{"role":"aut","display":"Girão, António","roleDisplay":"VerfasserIn","given":"António","family":"Girão"},{"family":"Hurley","given":"Eoin","display":"Hurley, Eoin","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Yap, Corrine","roleDisplay":"VerfasserIn","role":"aut","family":"Yap","given":"Corrine"}],"title":[{"title_sort":"Tower gaps in multicolour Ramsey numbers","title":"Tower gaps in multicolour Ramsey numbers"}],"note":["Online veröffentlicht am 28. Februar 2022 mit dem Titel \"New stepping-up constructions for multicoloured hypergraphs\"","Gesehen am 11.01.2024"],"type":{"bibl":"chapter","media":"Online-Ressource"},"recId":"1818872021","language":["eng"],"name":{"displayForm":["Quentin Dubroff, António Girão, Eoin Hurley, and Corrine Yap"]},"origin":[{"edition":"Version v2","dateIssuedDisp":"1 Sep 2023","dateIssuedKey":"2023"}],"id":{"eki":["1818872021"],"doi":["10.48550/arXiv.2202.14032"]},"physDesc":[{"extent":"16 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"part":{"pages":"1-16","year":"2023","extent":"16","text":"(2023), Artikel-ID 2202.14032, Seite 1-16"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"disp":"Tower gaps in multicolour Ramsey numbersArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"language":["eng"],"recId":"509006531"}]} | ||
| SRT | |a DUBROFFQUETOWERGAPSI1202 | ||