A Bayesian approach to modelling biological pattern formation with limited data

Pattern formation in biological tissues plays an important role in the development of living organisms. Since the classical work of Alan Turing, a pre-eminent way of modelling has been through reaction-diffusion mechanisms. More recently, alternative models have been proposed, that link dynamics of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kazarnikov, Alexey (VerfasserIn) , Scheichl, Robert (VerfasserIn) , Haario, Heikki (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 31 Mar 2022
Ausgabe:Version v2
In: Arxiv
Year: 2022, Pages: 1-28
DOI:10.48550/arXiv.2203.14742
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2203.14742
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2203.14742
Volltext
Verfasserangaben:Alexey Kazarnikov, Robert Scheichl, Heikki Haario and Anna Marciniak-Czochra

MARC

LEADER 00000caa a2200000 c 4500
001 1818945215
003 DE-627
005 20230118142412.0
007 cr uuu---uuuuu
008 221014s2022 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2203.14742  |2 doi 
035 |a (DE-627)1818945215 
035 |a (DE-599)KXP1818945215 
035 |a (OCoLC)1361695647 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kazarnikov, Alexey  |e VerfasserIn  |0 (DE-588)1270415840  |0 (DE-627)1818988240  |4 aut 
245 1 2 |a A Bayesian approach to modelling biological pattern formation with limited data  |c Alexey Kazarnikov, Robert Scheichl, Heikki Haario and Anna Marciniak-Czochra 
250 |a Version v2 
264 1 |c 31 Mar 2022 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Version 1 vom 28 März 2022, Version 2 vom 31 März 2022 
500 |a Gesehen am 14.10.2022 
520 |a Pattern formation in biological tissues plays an important role in the development of living organisms. Since the classical work of Alan Turing, a pre-eminent way of modelling has been through reaction-diffusion mechanisms. More recently, alternative models have been proposed, that link dynamics of diffusing molecular signals with tissue mechanics. In order to distinguish among different models, they should be compared to experimental observations. However, in many experimental situations only the limiting, stationary regime of the pattern formation process is observable, without knowledge of the transient behaviour or the initial state. The unstable nature of the underlying dynamics in all alternative models seriously complicates model and parameter identification, since small changes in the initial condition lead to distinct stationary patterns. To overcome this problem the initial state of the model can be randomised. In the latter case, fixed values of the model parameters correspond to a family of patterns rather than a fixed stationary solution, and standard approaches to compare pattern data directly with model outputs, e.g., in the least squares sense, are not suitable. Instead, statistical characteristics of the patterns should be compared, which is difficult given the typically limited amount of available data in practical applications. To deal with this problem, we extend a recently developed statistical approach for parameter identification using pattern data, the so-called Correlation Integral Likelihood (CIL) method. We suggest modifications that allow increasing the accuracy of the identification process without resizing the data set. The proposed approach is tested using different classes of pattern formation models. For all considered equations, parallel GPU-based implementations of the numerical solvers with efficient time stepping schemes are provided. 
650 4 |a Mathematics - Analysis of PDEs 
650 4 |a Quantitative Biology - Quantitative Methods 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
700 1 |a Haario, Heikki  |e VerfasserIn  |4 aut 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2022), Artikel-ID 2203.14742, Seite 1-28  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a A Bayesian approach to modelling biological pattern formation with limited data 
773 1 8 |g year:2022  |g elocationid:2203.14742  |g pages:1-28  |g extent:28  |a A Bayesian approach to modelling biological pattern formation with limited data 
856 4 0 |u https://doi.org/10.48550/arXiv.2203.14742  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2203.14742  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221014 
993 |a Article 
994 |a 2022 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |e 700000PM1044379626  |e 728500PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 4  |y j 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PS1173753842  |e 110200PS1173753842  |e 110000PS1173753842  |e 110400PS1173753842  |e 700000PS1173753842  |e 728500PS1173753842  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 1270415840  |a Kazarnikov, Alexey  |m 1270415840:Kazarnikov, Alexey  |d 700000  |d 728500  |e 700000PK1270415840  |e 728500PK1270415840  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1818945215  |e 4197212941 
BIB |a Y 
JSO |a {"recId":"1818945215","name":{"displayForm":["Alexey Kazarnikov, Robert Scheichl, Heikki Haario and Anna Marciniak-Czochra"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"id":{"doi":["10.48550/arXiv.2203.14742"],"eki":["1818945215"]},"origin":[{"dateIssuedDisp":"31 Mar 2022","dateIssuedKey":"2022","edition":"Version v2"}],"note":["Version 1 vom 28 März 2022, Version 2 vom 31 März 2022","Gesehen am 14.10.2022"],"physDesc":[{"extent":"28 S."}],"relHost":[{"pubHistory":["1991 -"],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"recId":"509006531","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 28.05.2024"],"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"disp":"A Bayesian approach to modelling biological pattern formation with limited dataArxiv","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"language":["eng"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"part":{"text":"(2022), Artikel-ID 2203.14742, Seite 1-28","pages":"1-28","extent":"28","year":"2022"}}],"title":[{"title_sort":"Bayesian approach to modelling biological pattern formation with limited data","title":"A Bayesian approach to modelling biological pattern formation with limited data"}],"person":[{"display":"Kazarnikov, Alexey","role":"aut","family":"Kazarnikov","given":"Alexey"},{"given":"Robert","family":"Scheichl","display":"Scheichl, Robert","role":"aut"},{"display":"Haario, Heikki","role":"aut","given":"Heikki","family":"Haario"},{"display":"Marciniak-Czochra, Anna","role":"aut","family":"Marciniak-Czochra","given":"Anna"}]} 
SRT |a KAZARNIKOVBAYESIANAP3120