Gromov-Witten theory via roots and logarithms

Orbifold and logarithmic structures provide independent routes to the virtual enumeration of curves with tangency orders for a simple normal crossings pair $(X|D)$. The theories do not coincide and their relationship has remained mysterious. We prove that the genus zero orbifold theories of multi-ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Battistella, Luca (VerfasserIn) , Nabijou, Navid (VerfasserIn) , Ranganathan, Dhruv (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 23 Jun 2022
Ausgabe:Version v2
In: Arxiv
Year: 2022, Pages: 1-35
DOI:10.48550/arXiv.2203.17224
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2203.17224
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2203.17224
Volltext
Verfasserangaben:Luca Battistella, Navid Nabijou and Dhruv Ranganathan

MARC

LEADER 00000caa a2200000 c 4500
001 1818951592
003 DE-627
005 20230118142351.0
007 cr uuu---uuuuu
008 221014s2022 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2203.17224  |2 doi 
035 |a (DE-627)1818951592 
035 |a (DE-599)KXP1818951592 
035 |a (OCoLC)1361695660 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Battistella, Luca  |e VerfasserIn  |0 (DE-588)1222170957  |0 (DE-627)1741170281  |4 aut 
245 1 0 |a Gromov-Witten theory via roots and logarithms  |c Luca Battistella, Navid Nabijou and Dhruv Ranganathan 
250 |a Version v2 
264 1 |c 23 Jun 2022 
300 |a 35 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Version 1 vom 31 März 2022, Version 2 vom 23 Juni 2022 
500 |a Gesehen am 14.10.2022 
520 |a Orbifold and logarithmic structures provide independent routes to the virtual enumeration of curves with tangency orders for a simple normal crossings pair $(X|D)$. The theories do not coincide and their relationship has remained mysterious. We prove that the genus zero orbifold theories of multi-root stacks of strata blowups of $(X|D)$ converge to the corresponding logarithmic theory of $(X|D)$. With fixed numerical data, there is an explicit combinatorial criterion that guarantees when a blowup is sufficiently refined for the theories to coincide. There are two key ideas in the proof. The first is the construction of a naive Gromov-Witten theory, which serves as an intermediary between roots and logarithms. The second is a smoothing theorem for tropical stable maps; the geometric theorem then follows via virtual intersection theory relative to the universal target. The results import new computational tools into logarithmic Gromov-Witten theory. As an application, we show that the genus zero logarithmic Gromov-Witten theory of a pair is determined by the absolute Gromov-Witten theories of its strata. 
650 4 |a 14N35, 14A21 
650 4 |a Mathematics - Algebraic Geometry 
700 1 |a Nabijou, Navid  |e VerfasserIn  |0 (DE-588)1240555717  |0 (DE-627)1769435492  |4 aut 
700 1 |a Ranganathan, Dhruv  |e VerfasserIn  |0 (DE-588)115341418X  |0 (DE-627)1014823641  |0 (DE-576)50021039X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2022), Artikel-ID 2203.17224, Seite 1-35  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Gromov-Witten theory via roots and logarithms 
773 1 8 |g year:2022  |g elocationid:2203.17224  |g pages:1-35  |g extent:35  |a Gromov-Witten theory via roots and logarithms 
856 4 0 |u https://doi.org/10.48550/arXiv.2203.17224  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2203.17224  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221014 
993 |a Article 
994 |a 2022 
998 |g 1222170957  |a Battistella, Luca  |m 1222170957:Battistella, Luca  |d 700000  |d 728500  |e 700000PB1222170957  |e 728500PB1222170957  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1818951592  |e 4197229038 
BIB |a Y 
JSO |a {"title":[{"title":"Gromov-Witten theory via roots and logarithms","title_sort":"Gromov-Witten theory via roots and logarithms"}],"person":[{"given":"Luca","family":"Battistella","role":"aut","roleDisplay":"VerfasserIn","display":"Battistella, Luca"},{"role":"aut","display":"Nabijou, Navid","roleDisplay":"VerfasserIn","given":"Navid","family":"Nabijou"},{"role":"aut","display":"Ranganathan, Dhruv","roleDisplay":"VerfasserIn","given":"Dhruv","family":"Ranganathan"}],"recId":"1818951592","language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Version 1 vom 31 März 2022, Version 2 vom 23 Juni 2022","Gesehen am 14.10.2022"],"id":{"doi":["10.48550/arXiv.2203.17224"],"eki":["1818951592"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"23 Jun 2022","edition":"Version v2"}],"name":{"displayForm":["Luca Battistella, Navid Nabijou and Dhruv Ranganathan"]},"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"disp":"Gromov-Witten theory via roots and logarithmsArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"text":"(2022), Artikel-ID 2203.17224, Seite 1-35","extent":"35","year":"2022","pages":"1-35"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"35 S."}]} 
SRT |a BATTISTELLGROMOVWITT2320