Gromov-Witten theory via roots and logarithms
Orbifold and logarithmic structures provide independent routes to the virtual enumeration of curves with tangency orders for a simple normal crossings pair $(X|D)$. The theories do not coincide and their relationship has remained mysterious. We prove that the genus zero orbifold theories of multi-ro...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
23 Jun 2022
|
| Ausgabe: | Version v2 |
| In: |
Arxiv
Year: 2022, Pages: 1-35 |
| DOI: | 10.48550/arXiv.2203.17224 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2203.17224 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2203.17224 |
| Verfasserangaben: | Luca Battistella, Navid Nabijou and Dhruv Ranganathan |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1818951592 | ||
| 003 | DE-627 | ||
| 005 | 20230118142351.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221014s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2203.17224 |2 doi | |
| 035 | |a (DE-627)1818951592 | ||
| 035 | |a (DE-599)KXP1818951592 | ||
| 035 | |a (OCoLC)1361695660 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Battistella, Luca |e VerfasserIn |0 (DE-588)1222170957 |0 (DE-627)1741170281 |4 aut | |
| 245 | 1 | 0 | |a Gromov-Witten theory via roots and logarithms |c Luca Battistella, Navid Nabijou and Dhruv Ranganathan |
| 250 | |a Version v2 | ||
| 264 | 1 | |c 23 Jun 2022 | |
| 300 | |a 35 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Version 1 vom 31 März 2022, Version 2 vom 23 Juni 2022 | ||
| 500 | |a Gesehen am 14.10.2022 | ||
| 520 | |a Orbifold and logarithmic structures provide independent routes to the virtual enumeration of curves with tangency orders for a simple normal crossings pair $(X|D)$. The theories do not coincide and their relationship has remained mysterious. We prove that the genus zero orbifold theories of multi-root stacks of strata blowups of $(X|D)$ converge to the corresponding logarithmic theory of $(X|D)$. With fixed numerical data, there is an explicit combinatorial criterion that guarantees when a blowup is sufficiently refined for the theories to coincide. There are two key ideas in the proof. The first is the construction of a naive Gromov-Witten theory, which serves as an intermediary between roots and logarithms. The second is a smoothing theorem for tropical stable maps; the geometric theorem then follows via virtual intersection theory relative to the universal target. The results import new computational tools into logarithmic Gromov-Witten theory. As an application, we show that the genus zero logarithmic Gromov-Witten theory of a pair is determined by the absolute Gromov-Witten theories of its strata. | ||
| 650 | 4 | |a 14N35, 14A21 | |
| 650 | 4 | |a Mathematics - Algebraic Geometry | |
| 700 | 1 | |a Nabijou, Navid |e VerfasserIn |0 (DE-588)1240555717 |0 (DE-627)1769435492 |4 aut | |
| 700 | 1 | |a Ranganathan, Dhruv |e VerfasserIn |0 (DE-588)115341418X |0 (DE-627)1014823641 |0 (DE-576)50021039X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2022), Artikel-ID 2203.17224, Seite 1-35 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Gromov-Witten theory via roots and logarithms |
| 773 | 1 | 8 | |g year:2022 |g elocationid:2203.17224 |g pages:1-35 |g extent:35 |a Gromov-Witten theory via roots and logarithms |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2203.17224 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2203.17224 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221014 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1222170957 |a Battistella, Luca |m 1222170957:Battistella, Luca |d 700000 |d 728500 |e 700000PB1222170957 |e 728500PB1222170957 |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1818951592 |e 4197229038 | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title":"Gromov-Witten theory via roots and logarithms","title_sort":"Gromov-Witten theory via roots and logarithms"}],"person":[{"given":"Luca","family":"Battistella","role":"aut","roleDisplay":"VerfasserIn","display":"Battistella, Luca"},{"role":"aut","display":"Nabijou, Navid","roleDisplay":"VerfasserIn","given":"Navid","family":"Nabijou"},{"role":"aut","display":"Ranganathan, Dhruv","roleDisplay":"VerfasserIn","given":"Dhruv","family":"Ranganathan"}],"recId":"1818951592","language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Version 1 vom 31 März 2022, Version 2 vom 23 Juni 2022","Gesehen am 14.10.2022"],"id":{"doi":["10.48550/arXiv.2203.17224"],"eki":["1818951592"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"23 Jun 2022","edition":"Version v2"}],"name":{"displayForm":["Luca Battistella, Navid Nabijou and Dhruv Ranganathan"]},"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"disp":"Gromov-Witten theory via roots and logarithmsArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"text":"(2022), Artikel-ID 2203.17224, Seite 1-35","extent":"35","year":"2022","pages":"1-35"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"35 S."}]} | ||
| SRT | |a BATTISTELLGROMOVWITT2320 | ||