Six-dimensional supermultiplets from bundles on projective spaces

The projective variety of square-zero elements in the six-dimensional minimal supersymmetry algebra is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^3$. We use this fact, together with the pure spinor superfield formalism, to study supermultiplets in six dimensions, starting from vector bundles on p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hahner, Fabian (VerfasserIn) , Noja, Simone (VerfasserIn) , Saberi, Ingmar (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 16 Jun 2022
In: Arxiv
Year: 2022, Pages: 1-55
DOI:10.48550/arXiv.2206.08388
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2206.08388
Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2206.08388
Volltext
Verfasserangaben:Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 181895818X
003 DE-627
005 20230118142334.0
007 cr uuu---uuuuu
008 221014s2022 xx |||||o 00| ||eng c
024 7 |a 10.48550/arXiv.2206.08388  |2 doi 
035 |a (DE-627)181895818X 
035 |a (DE-599)KXP181895818X 
035 |a (OCoLC)1361695431 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hahner, Fabian  |d 1997-  |e VerfasserIn  |0 (DE-588)1269922556  |0 (DE-627)1818378906  |4 aut 
245 1 0 |a Six-dimensional supermultiplets from bundles on projective spaces  |c Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher 
264 1 |c 16 Jun 2022 
300 |a 55 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.10.2022 
520 |a The projective variety of square-zero elements in the six-dimensional minimal supersymmetry algebra is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^3$. We use this fact, together with the pure spinor superfield formalism, to study supermultiplets in six dimensions, starting from vector bundles on projective spaces. We classify all multiplets whose derived invariants for the supertranslation algebra form a line bundle over the nilpotence variety; one can think of such multiplets as being those whose holomorphic twists have rank one over Dolbeault forms on spacetime. In addition, we explicitly construct multiplets associated to natural higher-rank equivariant vector bundles, including the tangent and normal bundles as well as their duals. Among the multiplets constructed are the vector multiplet and hypermultiplet, the family of $\mathcal{O}(n)$-multiplets, and the supergravity and gravitino multiplets. Along the way, we tackle various theoretical problems within the pure spinor superfield formalism. In particular, we give some general discussion about the relation of the projective nilpotence variety to multiplets and prove general results on short exact sequences and dualities of sheaves in the context of the pure spinor superfield formalism. 
650 4 |a High Energy Physics - Theory 
650 4 |a Mathematical Physics 
650 4 |a Mathematics - Algebraic Geometry 
700 1 |a Noja, Simone  |e VerfasserIn  |0 (DE-588)1234615118  |0 (DE-627)175947486X  |4 aut 
700 1 |a Saberi, Ingmar  |e VerfasserIn  |0 (DE-588)1155601335  |0 (DE-627)1017875413  |0 (DE-576)501768211  |4 aut 
700 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2022), Artikel-ID 2206.08388, Seite 1-55  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Six-dimensional supermultiplets from bundles on projective spaces 
773 1 8 |g year:2022  |g elocationid:2206.08388  |g pages:1-55  |g extent:55  |a Six-dimensional supermultiplets from bundles on projective spaces 
856 4 0 |u https://doi.org/10.48550/arXiv.2206.08388  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://arxiv.org/abs/2206.08388  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221014 
993 |a Article 
994 |a 2022 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PW1089078978  |e 110100PW1089078978  |e 110000PW1089078978  |e 110400PW1089078978  |e 700000PW1089078978  |e 728500PW1089078978  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 4  |y j 
998 |g 1155601335  |a Saberi, Ingmar  |m 1155601335:Saberi, Ingmar  |d 700000  |d 728500  |e 700000PS1155601335  |e 728500PS1155601335  |k 0/700000/  |k 1/700000/728500/  |p 3 
998 |g 1234615118  |a Noja, Simone  |m 1234615118:Noja, Simone  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PN1234615118  |e 110100PN1234615118  |e 110000PN1234615118  |e 110400PN1234615118  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2 
998 |g 1269922556  |a Hahner, Fabian  |m 1269922556:Hahner, Fabian  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 728500  |e 110000PH1269922556  |e 110100PH1269922556  |e 110000PH1269922556  |e 110400PH1269922556  |e 700000PH1269922556  |e 728500PH1269922556  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN181895818X  |e 4197246552 
BIB |a Y 
JSO |a {"relHost":[{"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2022","pages":"1-55","text":"(2022), Artikel-ID 2206.08388, Seite 1-55","extent":"55"},"disp":"Six-dimensional supermultiplets from bundles on projective spacesArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]}}],"physDesc":[{"extent":"55 S."}],"id":{"doi":["10.48550/arXiv.2206.08388"],"eki":["181895818X"]},"origin":[{"dateIssuedDisp":"16 Jun 2022","dateIssuedKey":"2022"}],"name":{"displayForm":["Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher"]},"language":["eng"],"recId":"181895818X","note":["Gesehen am 14.10.2022"],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title":"Six-dimensional supermultiplets from bundles on projective spaces","title_sort":"Six-dimensional supermultiplets from bundles on projective spaces"}],"person":[{"family":"Hahner","given":"Fabian","roleDisplay":"VerfasserIn","display":"Hahner, Fabian","role":"aut"},{"given":"Simone","family":"Noja","role":"aut","roleDisplay":"VerfasserIn","display":"Noja, Simone"},{"family":"Saberi","given":"Ingmar","roleDisplay":"VerfasserIn","display":"Saberi, Ingmar","role":"aut"},{"given":"Johannes","family":"Walcher","role":"aut","display":"Walcher, Johannes","roleDisplay":"VerfasserIn"}]} 
SRT |a HAHNERFABISIXDIMENSI1620