Six-dimensional supermultiplets from bundles on projective spaces
The projective variety of square-zero elements in the six-dimensional minimal supersymmetry algebra is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^3$. We use this fact, together with the pure spinor superfield formalism, to study supermultiplets in six dimensions, starting from vector bundles on p...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
16 Jun 2022
|
| In: |
Arxiv
Year: 2022, Pages: 1-55 |
| DOI: | 10.48550/arXiv.2206.08388 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.48550/arXiv.2206.08388 Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/2206.08388 |
| Verfasserangaben: | Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 181895818X | ||
| 003 | DE-627 | ||
| 005 | 20230118142334.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221014s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.48550/arXiv.2206.08388 |2 doi | |
| 035 | |a (DE-627)181895818X | ||
| 035 | |a (DE-599)KXP181895818X | ||
| 035 | |a (OCoLC)1361695431 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hahner, Fabian |d 1997- |e VerfasserIn |0 (DE-588)1269922556 |0 (DE-627)1818378906 |4 aut | |
| 245 | 1 | 0 | |a Six-dimensional supermultiplets from bundles on projective spaces |c Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher |
| 264 | 1 | |c 16 Jun 2022 | |
| 300 | |a 55 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 14.10.2022 | ||
| 520 | |a The projective variety of square-zero elements in the six-dimensional minimal supersymmetry algebra is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^3$. We use this fact, together with the pure spinor superfield formalism, to study supermultiplets in six dimensions, starting from vector bundles on projective spaces. We classify all multiplets whose derived invariants for the supertranslation algebra form a line bundle over the nilpotence variety; one can think of such multiplets as being those whose holomorphic twists have rank one over Dolbeault forms on spacetime. In addition, we explicitly construct multiplets associated to natural higher-rank equivariant vector bundles, including the tangent and normal bundles as well as their duals. Among the multiplets constructed are the vector multiplet and hypermultiplet, the family of $\mathcal{O}(n)$-multiplets, and the supergravity and gravitino multiplets. Along the way, we tackle various theoretical problems within the pure spinor superfield formalism. In particular, we give some general discussion about the relation of the projective nilpotence variety to multiplets and prove general results on short exact sequences and dualities of sheaves in the context of the pure spinor superfield formalism. | ||
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Mathematical Physics | |
| 650 | 4 | |a Mathematics - Algebraic Geometry | |
| 700 | 1 | |a Noja, Simone |e VerfasserIn |0 (DE-588)1234615118 |0 (DE-627)175947486X |4 aut | |
| 700 | 1 | |a Saberi, Ingmar |e VerfasserIn |0 (DE-588)1155601335 |0 (DE-627)1017875413 |0 (DE-576)501768211 |4 aut | |
| 700 | 1 | |a Walcher, Johannes |d 1973- |e VerfasserIn |0 (DE-588)1089078978 |0 (DE-627)85098114X |0 (DE-576)459955098 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2022), Artikel-ID 2206.08388, Seite 1-55 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Six-dimensional supermultiplets from bundles on projective spaces |
| 773 | 1 | 8 | |g year:2022 |g elocationid:2206.08388 |g pages:1-55 |g extent:55 |a Six-dimensional supermultiplets from bundles on projective spaces |
| 856 | 4 | 0 | |u https://doi.org/10.48550/arXiv.2206.08388 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://arxiv.org/abs/2206.08388 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221014 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1089078978 |a Walcher, Johannes |m 1089078978:Walcher, Johannes |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PW1089078978 |e 110100PW1089078978 |e 110000PW1089078978 |e 110400PW1089078978 |e 700000PW1089078978 |e 728500PW1089078978 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 4 |y j | ||
| 998 | |g 1155601335 |a Saberi, Ingmar |m 1155601335:Saberi, Ingmar |d 700000 |d 728500 |e 700000PS1155601335 |e 728500PS1155601335 |k 0/700000/ |k 1/700000/728500/ |p 3 | ||
| 998 | |g 1234615118 |a Noja, Simone |m 1234615118:Noja, Simone |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PN1234615118 |e 110100PN1234615118 |e 110000PN1234615118 |e 110400PN1234615118 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 998 | |g 1269922556 |a Hahner, Fabian |m 1269922556:Hahner, Fabian |d 110000 |d 110100 |d 110000 |d 110400 |d 700000 |d 728500 |e 110000PH1269922556 |e 110100PH1269922556 |e 110000PH1269922556 |e 110400PH1269922556 |e 700000PH1269922556 |e 728500PH1269922556 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN181895818X |e 4197246552 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2022","pages":"1-55","text":"(2022), Artikel-ID 2206.08388, Seite 1-55","extent":"55"},"disp":"Six-dimensional supermultiplets from bundles on projective spacesArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]}}],"physDesc":[{"extent":"55 S."}],"id":{"doi":["10.48550/arXiv.2206.08388"],"eki":["181895818X"]},"origin":[{"dateIssuedDisp":"16 Jun 2022","dateIssuedKey":"2022"}],"name":{"displayForm":["Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher"]},"language":["eng"],"recId":"181895818X","note":["Gesehen am 14.10.2022"],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title":"Six-dimensional supermultiplets from bundles on projective spaces","title_sort":"Six-dimensional supermultiplets from bundles on projective spaces"}],"person":[{"family":"Hahner","given":"Fabian","roleDisplay":"VerfasserIn","display":"Hahner, Fabian","role":"aut"},{"given":"Simone","family":"Noja","role":"aut","roleDisplay":"VerfasserIn","display":"Noja, Simone"},{"family":"Saberi","given":"Ingmar","roleDisplay":"VerfasserIn","display":"Saberi, Ingmar","role":"aut"},{"given":"Johannes","family":"Walcher","role":"aut","display":"Walcher, Johannes","roleDisplay":"VerfasserIn"}]} | ||
| SRT | |a HAHNERFABISIXDIMENSI1620 | ||