Variational learning of quantum ground states on spiking neuromorphic hardware
Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional ne...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
[August 19, 2022]
|
| In: |
iScience
Year: 2022, Volume: 25, Issue: 8, Pages: 1-22 |
| ISSN: | 2589-0042 |
| DOI: | 10.1016/j.isci.2022.104707 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.isci.2022.104707 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589004222009798 |
| Author Notes: | Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1819801195 | ||
| 003 | DE-627 | ||
| 005 | 20230118140814.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221024s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.isci.2022.104707 |2 doi | |
| 035 | |a (DE-627)1819801195 | ||
| 035 | |a (DE-599)KXP1819801195 | ||
| 035 | |a (OCoLC)1361694021 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Klassert, Robert |e VerfasserIn |0 (DE-588)1262513448 |0 (DE-627)1810209722 |4 aut | |
| 245 | 1 | 0 | |a Variational learning of quantum ground states on spiking neuromorphic hardware |c Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner |
| 264 | 1 | |c [August 19, 2022] | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 24.10.2022 | ||
| 520 | |a Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional neural networks, physical model devices offer a fast, efficient and inherently parallel substrate capable of related forms of Markov chain Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization. We develop a training algorithm and apply it to the transverse field Ising model, showing good performance at moderate system sizes (N≤10). A systematic hyperparameter study shows that performance depends on sample quality, which is limited by temporal parameter variations on the analog neuromorphic chip. Our work thus provides an important step towards harnessing the capabilities of neuromorphic hardware for tackling the curse of dimensionality in quantum many-body problems. | ||
| 650 | 4 | |a Electrical materials | |
| 650 | 4 | |a Hardware implemented algorithm | |
| 650 | 4 | |a Quantum mechanics | |
| 700 | 1 | |a Baumbach, Andreas |d 1992- |e VerfasserIn |0 (DE-588)1169784216 |0 (DE-627)1035890704 |0 (DE-576)512249334 |4 aut | |
| 700 | 1 | |a Petrovici, Mihai A. |e VerfasserIn |0 (DE-588)1072021005 |0 (DE-627)826788823 |0 (DE-576)433488700 |4 aut | |
| 700 | 1 | |a Gärttner, Martin |d 1985- |e VerfasserIn |0 (DE-588)1047469529 |0 (DE-627)778426076 |0 (DE-576)401083527 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t iScience |d Amsterdam : Elsevier, 2018 |g 25(2022), 8 vom: Aug., Artikel-ID 104707, Seite 1-22 |h Online-Ressource |w (DE-627)1019532106 |w (DE-600)2927064-9 |w (DE-576)502115858 |x 2589-0042 |7 nnas |a Variational learning of quantum ground states on spiking neuromorphic hardware |
| 773 | 1 | 8 | |g volume:25 |g year:2022 |g number:8 |g month:08 |g elocationid:104707 |g pages:1-22 |g extent:22 |a Variational learning of quantum ground states on spiking neuromorphic hardware |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.isci.2022.104707 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S2589004222009798 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221024 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1047469529 |a Gärttner, Martin |m 1047469529:Gärttner, Martin |d 130000 |d 130200 |d 130000 |e 130000PG1047469529 |e 130200PG1047469529 |e 130000PG1047469529 |k 0/130000/ |k 1/130000/130200/ |k 0/130000/ |p 4 |y j | ||
| 998 | |g 1072021005 |a Petrovici, Mihai A. |m 1072021005:Petrovici, Mihai A. |d 130000 |d 130700 |e 130000PP1072021005 |e 130700PP1072021005 |k 0/130000/ |k 1/130000/130700/ |p 3 | ||
| 998 | |g 1169784216 |a Baumbach, Andreas |m 1169784216:Baumbach, Andreas |d 130000 |d 130700 |e 130000PB1169784216 |e 130700PB1169784216 |k 0/130000/ |k 1/130000/130700/ |p 2 | ||
| 998 | |g 1262513448 |a Klassert, Robert |m 1262513448:Klassert, Robert |p 1 |x j | ||
| 999 | |a KXP-PPN1819801195 |e 4201351890 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"[August 19, 2022]"}],"name":{"displayForm":["Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"id":{"eki":["1019532106"],"issn":["2589-0042"],"zdb":["2927064-9"]},"disp":"Variational learning of quantum ground states on spiking neuromorphic hardwareiScience","pubHistory":["Volume 1 (March 23, 2018)-"],"recId":"1019532106","origin":[{"dateIssuedDisp":"[2018]-","publisher":"Elsevier","publisherPlace":"Amsterdam ; Boston ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis"}],"title":[{"title":"iScience","title_sort":"iScience"}],"note":["Gesehen am 11.09.2018"],"part":{"pages":"1-22","volume":"25","text":"25(2022), 8 vom: Aug., Artikel-ID 104707, Seite 1-22","issue":"8","extent":"22","year":"2022"},"type":{"media":"Online-Ressource","bibl":"periodical"}}],"recId":"1819801195","id":{"doi":["10.1016/j.isci.2022.104707"],"eki":["1819801195"]},"language":["eng"],"physDesc":[{"extent":"22 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 24.10.2022"],"person":[{"family":"Klassert","display":"Klassert, Robert","roleDisplay":"VerfasserIn","given":"Robert","role":"aut"},{"role":"aut","given":"Andreas","roleDisplay":"VerfasserIn","display":"Baumbach, Andreas","family":"Baumbach"},{"given":"Mihai A.","role":"aut","roleDisplay":"VerfasserIn","family":"Petrovici","display":"Petrovici, Mihai A."},{"given":"Martin","role":"aut","display":"Gärttner, Martin","family":"Gärttner","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Variational learning of quantum ground states on spiking neuromorphic hardware","title":"Variational learning of quantum ground states on spiking neuromorphic hardware"}]} | ||
| SRT | |a KLASSERTROVARIATIONA1920 | ||