Variational learning of quantum ground states on spiking neuromorphic hardware

Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Klassert, Robert (Author) , Baumbach, Andreas (Author) , Petrovici, Mihai A. (Author) , Gärttner, Martin (Author)
Format: Article (Journal)
Language:English
Published: [August 19, 2022]
In: iScience
Year: 2022, Volume: 25, Issue: 8, Pages: 1-22
ISSN:2589-0042
DOI:10.1016/j.isci.2022.104707
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.isci.2022.104707
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589004222009798
Get full text
Author Notes:Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1819801195
003 DE-627
005 20230118140814.0
007 cr uuu---uuuuu
008 221024s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isci.2022.104707  |2 doi 
035 |a (DE-627)1819801195 
035 |a (DE-599)KXP1819801195 
035 |a (OCoLC)1361694021 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Klassert, Robert  |e VerfasserIn  |0 (DE-588)1262513448  |0 (DE-627)1810209722  |4 aut 
245 1 0 |a Variational learning of quantum ground states on spiking neuromorphic hardware  |c Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner 
264 1 |c [August 19, 2022] 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.10.2022 
520 |a Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional neural networks, physical model devices offer a fast, efficient and inherently parallel substrate capable of related forms of Markov chain Monte Carlo sampling. Here, we demonstrate the ability of a neuromorphic chip to represent the ground states of quantum spin models by variational energy minimization. We develop a training algorithm and apply it to the transverse field Ising model, showing good performance at moderate system sizes (N≤10). A systematic hyperparameter study shows that performance depends on sample quality, which is limited by temporal parameter variations on the analog neuromorphic chip. Our work thus provides an important step towards harnessing the capabilities of neuromorphic hardware for tackling the curse of dimensionality in quantum many-body problems. 
650 4 |a Electrical materials 
650 4 |a Hardware implemented algorithm 
650 4 |a Quantum mechanics 
700 1 |a Baumbach, Andreas  |d 1992-  |e VerfasserIn  |0 (DE-588)1169784216  |0 (DE-627)1035890704  |0 (DE-576)512249334  |4 aut 
700 1 |a Petrovici, Mihai A.  |e VerfasserIn  |0 (DE-588)1072021005  |0 (DE-627)826788823  |0 (DE-576)433488700  |4 aut 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t iScience  |d Amsterdam : Elsevier, 2018  |g 25(2022), 8 vom: Aug., Artikel-ID 104707, Seite 1-22  |h Online-Ressource  |w (DE-627)1019532106  |w (DE-600)2927064-9  |w (DE-576)502115858  |x 2589-0042  |7 nnas  |a Variational learning of quantum ground states on spiking neuromorphic hardware 
773 1 8 |g volume:25  |g year:2022  |g number:8  |g month:08  |g elocationid:104707  |g pages:1-22  |g extent:22  |a Variational learning of quantum ground states on spiking neuromorphic hardware 
856 4 0 |u https://doi.org/10.1016/j.isci.2022.104707  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589004222009798  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221024 
993 |a Article 
994 |a 2022 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |d 130200  |d 130000  |e 130000PG1047469529  |e 130200PG1047469529  |e 130000PG1047469529  |k 0/130000/  |k 1/130000/130200/  |k 0/130000/  |p 4  |y j 
998 |g 1072021005  |a Petrovici, Mihai A.  |m 1072021005:Petrovici, Mihai A.  |d 130000  |d 130700  |e 130000PP1072021005  |e 130700PP1072021005  |k 0/130000/  |k 1/130000/130700/  |p 3 
998 |g 1169784216  |a Baumbach, Andreas  |m 1169784216:Baumbach, Andreas  |d 130000  |d 130700  |e 130000PB1169784216  |e 130700PB1169784216  |k 0/130000/  |k 1/130000/130700/  |p 2 
998 |g 1262513448  |a Klassert, Robert  |m 1262513448:Klassert, Robert  |p 1  |x j 
999 |a KXP-PPN1819801195  |e 4201351890 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"[August 19, 2022]"}],"name":{"displayForm":["Robert Klassert, Andreas Baumbach, Mihai A. Petrovici, and Martin Gärttner"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"id":{"eki":["1019532106"],"issn":["2589-0042"],"zdb":["2927064-9"]},"disp":"Variational learning of quantum ground states on spiking neuromorphic hardwareiScience","pubHistory":["Volume 1 (March 23, 2018)-"],"recId":"1019532106","origin":[{"dateIssuedDisp":"[2018]-","publisher":"Elsevier","publisherPlace":"Amsterdam ; Boston ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis"}],"title":[{"title":"iScience","title_sort":"iScience"}],"note":["Gesehen am 11.09.2018"],"part":{"pages":"1-22","volume":"25","text":"25(2022), 8 vom: Aug., Artikel-ID 104707, Seite 1-22","issue":"8","extent":"22","year":"2022"},"type":{"media":"Online-Ressource","bibl":"periodical"}}],"recId":"1819801195","id":{"doi":["10.1016/j.isci.2022.104707"],"eki":["1819801195"]},"language":["eng"],"physDesc":[{"extent":"22 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 24.10.2022"],"person":[{"family":"Klassert","display":"Klassert, Robert","roleDisplay":"VerfasserIn","given":"Robert","role":"aut"},{"role":"aut","given":"Andreas","roleDisplay":"VerfasserIn","display":"Baumbach, Andreas","family":"Baumbach"},{"given":"Mihai A.","role":"aut","roleDisplay":"VerfasserIn","family":"Petrovici","display":"Petrovici, Mihai A."},{"given":"Martin","role":"aut","display":"Gärttner, Martin","family":"Gärttner","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Variational learning of quantum ground states on spiking neuromorphic hardware","title":"Variational learning of quantum ground states on spiking neuromorphic hardware"}]} 
SRT |a KLASSERTROVARIATIONA1920