Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 years

Machine learning and semantic analysis are computer-based methods to evaluate complex relationships and predict future perspectives. We used these technologies to define recent, current and future topics in pancreatic cancer research. Publications indexed under the Medical Subject Headings (MeSH) te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Kangtao (VerfasserIn) , Herr, Ingrid (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 March 2022
In: Frontiers in oncology
Year: 2022, Jahrgang: 12, Pages: 1-11
ISSN:2234-943X
DOI:10.3389/fonc.2022.832385
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3389/fonc.2022.832385
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/articles/10.3389/fonc.2022.832385/full
Volltext
Verfasserangaben:Kangtao Wang and Ingrid Herr

MARC

LEADER 00000caa a2200000 c 4500
001 1819879135
003 DE-627
005 20230117205051.0
007 cr uuu---uuuuu
008 221025s2022 xx |||||o 00| ||eng c
024 7 |a 10.3389/fonc.2022.832385  |2 doi 
035 |a (DE-627)1819879135 
035 |a (DE-599)KXP1819879135 
035 |a (OCoLC)1360438824 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wang, Kangtao  |d 1994-  |e VerfasserIn  |0 (DE-588)1258415992  |0 (DE-627)180441039X  |4 aut 
245 1 0 |a Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 years  |c Kangtao Wang and Ingrid Herr 
264 1 |c 28 March 2022 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.10.2022 
520 |a Machine learning and semantic analysis are computer-based methods to evaluate complex relationships and predict future perspectives. We used these technologies to define recent, current and future topics in pancreatic cancer research. Publications indexed under the Medical Subject Headings (MeSH) term 'Pancreatic Neoplasms' from January 1996 to October 2021 were downloaded from PubMed. Using the statistical computing language R and the interpreted, high-level, general-purpose programming language Python, we extracted publication dates, geographic information, and abstracts from each publication's metadata for bibliometric analyses. The generative statistical algorithm "latent Dirichlet allocation" (LDA) was applied to identify specific research topics and trends. The unsupervised "Louvain algorithm" was used to establish a network to identify relationships between single topics. A total of 60,296 publications were identified and analyzed. The publications were derived from 133 countries, mostly from the Northern Hemisphere. For the term "pancreatic cancer research", 12,058 MeSH terms appeared 1,395,060 times. Among them, we identified the four main topics "Clinical Manifestation and Diagnosis", "Review and Management", "Treatment Studies", and "Basic Research". The number of publications has increased rapidly during the past 25 years. Based on the number of publications, the algorithm predicted that "Immunotherapy", Prognostic research", "Protein expression", "Case reports", "Gemcitabine and mechanism", "Clinical study of gemcitabine", "Operation and postoperation", "Chemotherapy and resection", and "Review and management" as current research topics. To our knowledge, this is the first study on this subject of pancreatic cancer research, which has become possible due to the improvement of algorithms and hardware. 
700 1 |a Herr, Ingrid  |e VerfasserIn  |0 (DE-588)114884242  |0 (DE-627)691233276  |0 (DE-576)168702436  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in oncology  |d Lausanne : Frontiers Media, 2011  |g 12(2022), Artikel-ID 8322385, Seite 1-11  |h Online-Ressource  |w (DE-627)684965518  |w (DE-600)2649216-7  |w (DE-576)35841184X  |x 2234-943X  |7 nnas  |a Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 years 
773 1 8 |g volume:12  |g year:2022  |g elocationid:8322385  |g pages:1-11  |g extent:11  |a Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 years 
856 4 0 |u https://doi.org/10.3389/fonc.2022.832385  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fonc.2022.832385/full  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221025 
993 |a Article 
994 |a 2022 
998 |g 114884242  |a Herr, Ingrid  |m 114884242:Herr, Ingrid  |d 910000  |d 910200  |d 50000  |e 910000PH114884242  |e 910200PH114884242  |e 50000PH114884242  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 2  |y j 
998 |g 1258415992  |a Wang, Kangtao  |m 1258415992:Wang, Kangtao  |d 50000  |e 50000PW1258415992  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1819879135  |e 4201658570 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"11 S."}],"relHost":[{"origin":[{"publisherPlace":"Lausanne","publisher":"Frontiers Media","dateIssuedKey":"2011","dateIssuedDisp":"2011-"}],"id":{"issn":["2234-943X"],"eki":["684965518"],"zdb":["2649216-7"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Frontiers in oncology","title":"Frontiers in oncology"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 07.11.13"],"disp":"Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 yearsFrontiers in oncology","language":["eng"],"recId":"684965518","pubHistory":["2011 -"],"part":{"extent":"11","text":"12(2022), Artikel-ID 8322385, Seite 1-11","volume":"12","pages":"1-11","year":"2022"}}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"28 March 2022"}],"id":{"doi":["10.3389/fonc.2022.832385"],"eki":["1819879135"]},"name":{"displayForm":["Kangtao Wang and Ingrid Herr"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 25.10.2022"],"recId":"1819879135","language":["eng"],"title":[{"title":"Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 years","title_sort":"Machine-learning-based bibliometric analysis of pancreatic cancer research over the past 25 years"}],"person":[{"family":"Wang","given":"Kangtao","roleDisplay":"VerfasserIn","display":"Wang, Kangtao","role":"aut"},{"given":"Ingrid","family":"Herr","role":"aut","roleDisplay":"VerfasserIn","display":"Herr, Ingrid"}]} 
SRT |a WANGKANGTAMACHINELEA2820