BlaST: a machine-learning estimator for the synchrotron peak of blazars

Active Galaxies with a jet pointing towards us, so-called blazars, play an important role in the field of high-energy astrophysics. One of the most important features in the classification scheme of blazars is the peak frequency of the synchrotron emission (νpeakS) in the spectral energy distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glauch, Theo (VerfasserIn) , Kerscher, T. (VerfasserIn) , Giommi, Paolo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 August 2022
In: Astronomy and computing
Year: 2022, Jahrgang: 41, Pages: 1-10
ISSN:2213-1345
DOI:10.1016/j.ascom.2022.100646
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ascom.2022.100646
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2213133722000622
Volltext
Verfasserangaben:T. Glauch, T. Kerscher, P. Giommi

MARC

LEADER 00000caa a2200000 c 4500
001 1820037134
003 DE-627
005 20230118140247.0
007 cr uuu---uuuuu
008 221026s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ascom.2022.100646  |2 doi 
035 |a (DE-627)1820037134 
035 |a (DE-599)KXP1820037134 
035 |a (OCoLC)1361693654 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Glauch, Theo  |d 1991-  |e VerfasserIn  |0 (DE-588)1271358581  |0 (DE-627)1820166228  |4 aut 
245 1 0 |a BlaST  |b a machine-learning estimator for the synchrotron peak of blazars  |c T. Glauch, T. Kerscher, P. Giommi 
264 1 |c 27 August 2022 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.10.2022 
520 |a Active Galaxies with a jet pointing towards us, so-called blazars, play an important role in the field of high-energy astrophysics. One of the most important features in the classification scheme of blazars is the peak frequency of the synchrotron emission (νpeakS) in the spectral energy distribution (SED). In contrast to standard blazar catalogs that usually calculate the νpeakSmanually, we have developed a machine-learning algorithm - BlaST- that not only simplifies the estimation, but also provides a reliable uncertainty evaluation. Furthermore, it naturally accounts for additional SED components from the host galaxy and the disk emission, which may be a major source of confusion. Using our tool, we re-estimate the synchrotron peaks in the Fermi 4LAC-DR2 catalog. We find that BlaSTimproves the νpeakS estimation especially in those cases where the contribution of components not related to the jet is important. 
650 4 |a Astronomical databases: miscellaneous 
650 4 |a BL Lacertae objects: general 
650 4 |a Galaxies: active 
650 4 |a Galaxies: jets 
650 4 |a Machine learning 
650 4 |a Methods: data analysis 
700 1 |a Kerscher, T.  |e VerfasserIn  |4 aut 
700 1 |a Giommi, Paolo  |e VerfasserIn  |0 (DE-588)1271358646  |0 (DE-627)182016635X  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and computing  |d Amsterdam [u.a.] : Elsevier, 2013  |g 41(2022), Artikel-ID 100646, Seite 1-10  |h Online-Ressource  |w (DE-627)733357857  |w (DE-600)2695868-5  |w (DE-576)377488372  |x 2213-1345  |7 nnas  |a BlaST a machine-learning estimator for the synchrotron peak of blazars 
773 1 8 |g volume:41  |g year:2022  |g elocationid:100646  |g pages:1-10  |g extent:10  |a BlaST a machine-learning estimator for the synchrotron peak of blazars 
856 4 0 |u https://doi.org/10.1016/j.ascom.2022.100646  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2213133722000622  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221026 
993 |a Article 
994 |a 2022 
998 |g 1271358581  |a Glauch, Theo  |m 1271358581:Glauch, Theo  |d 130000  |d 130500  |e 130000PG1271358581  |e 130500PG1271358581  |k 0/130000/  |k 1/130000/130500/  |p 1  |x j 
999 |a KXP-PPN1820037134  |e 4202115775 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"dateIssuedKey":"2013","publisher":"Elsevier","dateIssuedDisp":"2013-","publisherPlace":"Amsterdam [u.a.]"}],"id":{"eki":["733357857"],"zdb":["2695868-5"],"issn":["2213-1345"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Astronomy and computing","title_sort":"Astronomy and computing"}],"note":["Gesehen am 23.03.2022"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"BlaST a machine-learning estimator for the synchrotron peak of blazarsAstronomy and computing","recId":"733357857","language":["eng"],"pubHistory":["1.2013 -"],"part":{"pages":"1-10","year":"2022","extent":"10","text":"41(2022), Artikel-ID 100646, Seite 1-10","volume":"41"}}],"physDesc":[{"extent":"10 S."}],"id":{"eki":["1820037134"],"doi":["10.1016/j.ascom.2022.100646"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"27 August 2022"}],"name":{"displayForm":["T. Glauch, T. Kerscher, P. Giommi"]},"language":["eng"],"recId":"1820037134","note":["Gesehen am 26.10.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"BlaST","subtitle":"a machine-learning estimator for the synchrotron peak of blazars","title_sort":"BlaST"}],"person":[{"display":"Glauch, Theo","roleDisplay":"VerfasserIn","role":"aut","family":"Glauch","given":"Theo"},{"roleDisplay":"VerfasserIn","display":"Kerscher, T.","role":"aut","family":"Kerscher","given":"T."},{"given":"Paolo","family":"Giommi","role":"aut","roleDisplay":"VerfasserIn","display":"Giommi, Paolo"}]} 
SRT |a GLAUCHTHEOBLAST2720