A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests
The ideal MHD equations are a central model in astrophysics, and their solution relies upon stable numerical schemes. We present an implementation of a new method, which possesses excellent stability properties. Numerical tests demonstrate that the theoretical stability properties are valid in pract...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2 February 2011
|
| In: |
Journal of computational physics
Year: 2011, Jahrgang: 230, Heft: 9, Pages: 3331-3351 |
| ISSN: | 1090-2716 |
| DOI: | 10.1016/j.jcp.2011.01.026 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jcp.2011.01.026 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0021999111000519 |
| Verfasserangaben: | K. Waagan, C. Federrath, C. Klingenberg |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 182067357X | ||
| 003 | DE-627 | ||
| 005 | 20230710103431.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221103s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jcp.2011.01.026 |2 doi | |
| 035 | |a (DE-627)182067357X | ||
| 035 | |a (DE-599)KXP182067357X | ||
| 035 | |a (OCoLC)1389756016 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Waagan, Knut |e VerfasserIn |0 (DE-588)1271909367 |0 (DE-627)1820675815 |4 aut | |
| 245 | 1 | 2 | |a A robust numerical scheme for highly compressible magnetohydrodynamics |b nonlinear stability, implementation and tests |c K. Waagan, C. Federrath, C. Klingenberg |
| 264 | 1 | |c 2 February 2011 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 03.11.2022 | ||
| 520 | |a The ideal MHD equations are a central model in astrophysics, and their solution relies upon stable numerical schemes. We present an implementation of a new method, which possesses excellent stability properties. Numerical tests demonstrate that the theoretical stability properties are valid in practice with negligible compromises to accuracy. The result is a highly robust scheme with state-of-the-art efficiency. The scheme’s robustness is due to entropy stability, positivity and properly discretised Powell terms. The implementation takes the form of a modification of the MHD module in the FLASH code, an adaptive mesh refinement code. We compare the new scheme with the standard FLASH implementation for MHD. Results show comparable accuracy to standard FLASH with the Roe solver, but highly improved efficiency and stability, particularly for high Mach number flows and low plasma β. The tests include 1D shock tubes, 2D instabilities and highly supersonic, 3D turbulence. We consider turbulent flows with RMS sonic Mach numbers up to 10, typical of gas flows in the interstellar medium. We investigate both strong initial magnetic fields and magnetic field amplification by the turbulent dynamo from extremely high plasma β. The energy spectra show a reasonable decrease in dissipation with grid refinement, and at a resolution of 5123 grid cells we identify a narrow inertial range with the expected power law scaling. The turbulent dynamo exhibits exponential growth of magnetic pressure, with the growth rate higher from solenoidal forcing than from compressive forcing. Two versions of the new scheme are presented, using relaxation-based 3-wave and 5-wave approximate Riemann solvers, respectively. The 5-wave solver is more accurate in some cases, and its computational cost is close to the 3-wave solver. | ||
| 650 | 4 | |a Finite volume schemes | |
| 650 | 4 | |a Magnetohydrodynamics | |
| 650 | 4 | |a Numerical stability | |
| 650 | 4 | |a Supersonic turbulence | |
| 700 | 1 | |a Federrath, Christoph |e VerfasserIn |0 (DE-588)141657138 |0 (DE-627)630407959 |0 (DE-576)324891598 |4 aut | |
| 700 | 1 | |a Klingenberg, Christian |e VerfasserIn |0 (DE-588)1166098427 |0 (DE-627)1029998108 |0 (DE-576)510614868 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of computational physics |d Amsterdam : Elsevier, 1961 |g 230(2011), 9 vom: 1. Mai, Seite 3331-3351 |h Online-Ressource |w (DE-627)266892485 |w (DE-600)1469164-4 |w (DE-576)104193824 |x 1090-2716 |7 nnas |a A robust numerical scheme for highly compressible magnetohydrodynamics nonlinear stability, implementation and tests |
| 773 | 1 | 8 | |g volume:230 |g year:2011 |g number:9 |g day:1 |g month:05 |g pages:3331-3351 |g extent:21 |a A robust numerical scheme for highly compressible magnetohydrodynamics nonlinear stability, implementation and tests |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jcp.2011.01.026 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0021999111000519 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221103 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 141657138 |a Federrath, Christoph |m 141657138:Federrath, Christoph |p 2 | ||
| 999 | |a KXP-PPN182067357X |e 4206009368 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"182067357X","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 03.11.2022"],"title":[{"subtitle":"nonlinear stability, implementation and tests","title":"A robust numerical scheme for highly compressible magnetohydrodynamics","title_sort":"robust numerical scheme for highly compressible magnetohydrodynamics"}],"person":[{"family":"Waagan","given":"Knut","roleDisplay":"VerfasserIn","display":"Waagan, Knut","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Federrath, Christoph","role":"aut","family":"Federrath","given":"Christoph"},{"display":"Klingenberg, Christian","roleDisplay":"VerfasserIn","role":"aut","family":"Klingenberg","given":"Christian"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["266892485"],"zdb":["1469164-4"],"issn":["1090-2716"]},"origin":[{"publisherPlace":"Amsterdam ; Orlando, Fla.","dateIssuedDisp":"1961-","publisher":"Elsevier ; Academic Press","dateIssuedKey":"1961"}],"language":["eng"],"recId":"266892485","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 04.06.2020"],"disp":"A robust numerical scheme for highly compressible magnetohydrodynamics nonlinear stability, implementation and testsJournal of computational physics","part":{"extent":"21","volume":"230","text":"230(2011), 9 vom: 1. Mai, Seite 3331-3351","pages":"3331-3351","issue":"9","year":"2011"},"pubHistory":["1.1966 - 231.2012; Vol. 232.2013 -"],"title":[{"title_sort":"Journal of computational physics","title":"Journal of computational physics"}]}],"physDesc":[{"extent":"21 S."}],"id":{"eki":["182067357X"],"doi":["10.1016/j.jcp.2011.01.026"]},"origin":[{"dateIssuedDisp":"2 February 2011","dateIssuedKey":"2011"}],"name":{"displayForm":["K. Waagan, C. Federrath, C. Klingenberg"]}} | ||
| SRT | |a WAAGANKNUTROBUSTNUME2201 | ||