Joint program and layout transformations to enable convolutional operators on specialized hardware based on constraint programming

The success of Deep Artificial Neural Networks (DNNs) in many domains created a rich body of research concerned with hardware accelerators for compute-intensive DNN operators. However, implementing such operators efficiently with complex hardware intrinsics such as matrix multiply is a task not yet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rieber, Dennis (VerfasserIn) , Acosta, Axel (VerfasserIn) , Fröning, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: ACM Transactions on architecture and code optimization
Year: 2022, Jahrgang: 19, Heft: 1, Pages: 1-26
ISSN:1544-3973
DOI:10.1145/3487922
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1145/3487922
Verlag, kostenfrei, Volltext: https://dl.acm.org/doi/10.1145/3487922
Volltext
Verfasserangaben:Dennis Rieber and Axel Acosta, Holger Fröning

MARC

LEADER 00000caa a2200000 c 4500
001 1823034926
003 DE-627
005 20230118125912.0
007 cr uuu---uuuuu
008 221121s2022 xx |||||o 00| ||eng c
024 7 |a 10.1145/3487922  |2 doi 
035 |a (DE-627)1823034926 
035 |a (DE-599)KXP1823034926 
035 |a (OCoLC)1361670567 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Rieber, Dennis  |d 1991-  |e VerfasserIn  |0 (DE-588)1263779395  |0 (DE-627)1811876978  |4 aut 
245 1 0 |a Joint program and layout transformations to enable convolutional operators on specialized hardware based on constraint programming  |c Dennis Rieber and Axel Acosta, Holger Fröning 
264 1 |c 2022 
300 |a 26 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 6. Dezember 2021 
500 |a Gesehen am 21.11.2022 
520 |a The success of Deep Artificial Neural Networks (DNNs) in many domains created a rich body of research concerned with hardware accelerators for compute-intensive DNN operators. However, implementing such operators efficiently with complex hardware intrinsics such as matrix multiply is a task not yet automated gracefully. Solving this task often requires joint program and data layout transformations. First solutions to this problem have been proposed, such as TVM, UNIT, or ISAMIR, which work on a loop-level representation of operators and specify data layout and possible program transformations before the embedding into the operator is performed. This top-down approach creates a tension between exploration range and search space complexity, especially when also exploring data layout transformations such as im2col, channel packing, or padding. In this work, we propose a new approach to this problem. We created a bottom-up method that allows the joint transformation of both computation and data layout based on the found embedding. By formulating the embedding as a constraint satisfaction problem over the scalar dataflow, every possible embedding solution is contained in the search space. Adding additional constraints and optimization targets to the solver generates the subset of preferable solutions. An evaluation using the VTA hardware accelerator with the Baidu DeepBench inference benchmark shows that our approach can automatically generate code competitive to reference implementations. Further, we show that dynamically determining the data layout based on intrinsic and workload is beneficial for hardware utilization and performance. In cases where the reference implementation has low hardware utilization due to its fixed deployment strategy, we achieve a geomean speedup of up to x2.813, while individual operators can improve as much as x170. 
650 4 |a instruction selection 
650 4 |a Intermediate representation 
650 4 |a neural networks 
650 4 |a tensor computations 
700 1 |a Acosta, Axel  |e VerfasserIn  |0 (DE-588)1273272722  |0 (DE-627)1823037283  |4 aut 
700 1 |a Fröning, Holger  |d 1976-  |e VerfasserIn  |0 (DE-588)133209466  |0 (DE-627)538678658  |0 (DE-576)299696189  |4 aut 
773 0 8 |i Enthalten in  |a Association for Computing Machinery  |t ACM Transactions on architecture and code optimization  |d New York, NY : [Verlag nicht ermittelbar], 2004  |g 19(2022), 1, Artikel-ID 7, Seite 1-26  |h Online-Ressource  |w (DE-627)385612966  |w (DE-600)2142607-7  |w (DE-576)111418801  |x 1544-3973  |7 nnas 
773 1 8 |g volume:19  |g year:2022  |g number:1  |g elocationid:7  |g pages:1-26  |g extent:26  |a Joint program and layout transformations to enable convolutional operators on specialized hardware based on constraint programming 
856 4 0 |u https://doi.org/10.1145/3487922  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://dl.acm.org/doi/10.1145/3487922  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221121 
993 |a Article 
994 |a 2022 
998 |g 133209466  |a Fröning, Holger  |m 133209466:Fröning, Holger  |d 700000  |d 720000  |e 700000PF133209466  |e 720000PF133209466  |k 0/700000/  |k 1/700000/720000/  |p 3  |y j 
998 |g 1263779395  |a Rieber, Dennis  |m 1263779395:Rieber, Dennis  |d 110000  |e 110000PR1263779395  |k 0/110000/  |p 1  |x j 
999 |a KXP-PPN1823034926  |e 4216939090 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"publisher":"[Verlag nicht ermittelbar]","dateIssuedDisp":"2004-","dateIssuedKey":"2004","publisherPlace":"New York, NY"}],"id":{"zdb":["2142607-7"],"eki":["385612966"],"issn":["1544-3973"]},"title":[{"title_sort":"ACM Transactions on architecture and code optimization","title":"ACM Transactions on architecture and code optimization","subtitle":"ACM TACO"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"note":["Gesehen am 15.06.2020","Fortsetzung der Druck-Ausgabe"],"titleAlt":[{"title":"ACM TACO"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"385612966","part":{"pages":"1-26","volume":"19","extent":"26","issue":"1","year":"2022","text":"19(2022), 1, Artikel-ID 7, Seite 1-26"},"disp":"Association for Computing MachineryACM Transactions on architecture and code optimization","pubHistory":["1.2004 -"],"corporate":[{"role":"aut","display":"Association for Computing Machinery"}]}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Dennis","display":"Rieber, Dennis","family":"Rieber","role":"aut"},{"role":"aut","family":"Acosta","display":"Acosta, Axel","given":"Axel"},{"family":"Fröning","display":"Fröning, Holger","role":"aut","given":"Holger"}],"id":{"eki":["1823034926"],"doi":["10.1145/3487922"]},"recId":"1823034926","origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"2022"}],"name":{"displayForm":["Dennis Rieber and Axel Acosta, Holger Fröning"]},"note":["Online veröffentlicht: 6. Dezember 2021","Gesehen am 21.11.2022"],"physDesc":[{"extent":"26 S."}],"title":[{"title":"Joint program and layout transformations to enable convolutional operators on specialized hardware based on constraint programming","title_sort":"Joint program and layout transformations to enable convolutional operators on specialized hardware based on constraint programming"}],"language":["eng"]} 
SRT |a RIEBERDENNJOINTPROGR2022