Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations

In this paper, the generalized finite element method (GFEM) for solving second order elliptic equations with rough coefficients is studied. New optimal local approximation spaces for GFEMs based on local eigenvalue problems involving a partition of unity are presented. These new spaces have advantag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ma, Chupeng (VerfasserIn) , Scheichl, Robert (VerfasserIn) , Dodwell, Tim (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 31, 2022
In: SIAM journal on numerical analysis
Year: 2022, Jahrgang: 60, Heft: 1, Pages: 244-273
ISSN:1095-7170
DOI:10.1137/21M1406179
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/21M1406179
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/21M1406179
Volltext
Verfasserangaben:Chupeng Ma, Robert Scheichl, and Tim Dodwell

MARC

LEADER 00000caa a2200000 c 4500
001 1823165435
003 DE-627
005 20230118125744.0
007 cr uuu---uuuuu
008 221122s2022 xx |||||o 00| ||eng c
024 7 |a 10.1137/21M1406179  |2 doi 
035 |a (DE-627)1823165435 
035 |a (DE-599)KXP1823165435 
035 |a (OCoLC)1361692085 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ma, Chupeng  |e VerfasserIn  |0 (DE-588)1215789548  |0 (DE-627)1726867072  |4 aut 
245 1 0 |a Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations  |c Chupeng Ma, Robert Scheichl, and Tim Dodwell 
264 1 |c January 31, 2022 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.11.2022 
520 |a In this paper, the generalized finite element method (GFEM) for solving second order elliptic equations with rough coefficients is studied. New optimal local approximation spaces for GFEMs based on local eigenvalue problems involving a partition of unity are presented. These new spaces have advantages over those proposed in [I. Babuska and R. Lipton, Multisvale Model. Simul., 9 (2011), pp. 373--406]. First, in addition to a nearly exponential decay rate of the local approximation errors with respect to the dimensions of the local spaces, the rate of convergence with respect to the size of the oversampling region is also established. Second, the theoretical results hold for problems with mixed boundary conditions defined on general Lipschitz domains. Finally, an efficient and easy-to-implement technique for generating the discrete A-harmonic spaces is proposed which relies on solving an eigenvalue problem associated with the Dirichlet-to-Neumann operator, leading to a substantial reduction in computational cost. Numerical experiments are presented to support the theoretical analysis and to confirm the effectiveness of the new method. 
650 4 |a elliptic problems 
650 4 |a generalized finite element method 
650 4 |a homogenization 
650 4 |a Kolo-mogrov n-width 
650 4 |a local spectral basis 
650 4 |a multiscale 
650 4 |a multiscale method 
650 4 |a partition of unity 
650 4 |a spaces 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
700 1 |a Dodwell, Tim  |e VerfasserIn  |0 (DE-588)1204142718  |0 (DE-627)1689281499  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on numerical analysis  |d Philadelphia, Pa. : SIAM, 1966  |g 60(2022), 1, Seite 244-273  |h Online-Ressource  |w (DE-627)266885446  |w (DE-600)1468409-3  |w (DE-576)075961660  |x 1095-7170  |7 nnas 
773 1 8 |g volume:60  |g year:2022  |g number:1  |g pages:244-273  |g extent:30  |a Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations 
856 4 0 |u https://doi.org/10.1137/21M1406179  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/21M1406179  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221122 
993 |a Article 
994 |a 2022 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PS1173753842  |e 110200PS1173753842  |e 110000PS1173753842  |e 110400PS1173753842  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
998 |g 1215789548  |a Ma, Chupeng  |m 1215789548:Ma, Chupeng  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM1215789548  |e 110200PM1215789548  |e 110000PM1215789548  |e 110400PM1215789548  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1823165435  |e 4218132569 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"eki":["1823165435"],"doi":["10.1137/21M1406179"]},"name":{"displayForm":["Chupeng Ma, Robert Scheichl, and Tim Dodwell"]},"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1823165435","physDesc":[{"extent":"30 S."}],"title":[{"title":"Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations","title_sort":"Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations"}],"person":[{"display":"Ma, Chupeng","role":"aut","family":"Ma","given":"Chupeng"},{"given":"Robert","family":"Scheichl","display":"Scheichl, Robert","role":"aut"},{"role":"aut","display":"Dodwell, Tim","given":"Tim","family":"Dodwell"}],"relHost":[{"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"recId":"266885446","id":{"zdb":["1468409-3"],"issn":["1095-7170"],"eki":["266885446"]},"pubHistory":["3.1966 -"],"origin":[{"publisher":"SIAM","dateIssuedDisp":"1966-","publisherPlace":"Philadelphia, Pa.","dateIssuedKey":"1966"}],"note":["Gesehen am 02.07.2021"],"physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","titleAlt":[{"title":"Journal on numerical analysis"}],"language":["eng"],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics"}],"part":{"issue":"1","text":"60(2022), 1, Seite 244-273","pages":"244-273","extent":"30","volume":"60","year":"2022"},"title":[{"title":"SIAM journal on numerical analysis","title_sort":"SIAM journal on numerical analysis"}]}],"origin":[{"dateIssuedDisp":"January 31, 2022","dateIssuedKey":"2022"}],"note":["Gesehen am 22.11.2022"]} 
SRT |a MACHUPENGSNOVELDESIG3120