Revealing molecular orbital gating by transition voltage spectroscopy

Recently, Song et al. [Nature 462, 1039 (2009)] employed transition voltage spectroscopy to demonstrate that the energy εH of the highest occupied molecular orbital (HOMO) of single-molecule transistors can be controlled by a gate potential VG. To demonstrate the linear dependence εH−VG, the experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bâldea, Ioan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 August 2010
In: Chemical physics
Year: 2010, Jahrgang: 377, Heft: 1, Pages: 15-20
DOI:10.1016/j.chemphys.2010.08.009
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.chemphys.2010.08.009
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0301010410003794
Volltext
Verfasserangaben:Ioan Bâldea
Beschreibung
Zusammenfassung:Recently, Song et al. [Nature 462, 1039 (2009)] employed transition voltage spectroscopy to demonstrate that the energy εH of the highest occupied molecular orbital (HOMO) of single-molecule transistors can be controlled by a gate potential VG. To demonstrate the linear dependence εH−VG, the experimental data have been interpreted by modeling the molecule as an energy barrier spanning the spatial source-drain region of molecular junctions. Since, as shown in this work, that crude model cannot quantitatively describe the measured I-V-characteristics, it is important to get further support for the linear dependence of εH on VG. The results presented here, which have been obtained within a model of a point-like molecule, confirm this linear dependence. Because the two models rely upon complementary descriptions, the present results indicate that the interpretation of the experimental results as evidence for a gate controlled HOMO is sufficiently general.
Beschreibung:Gesehen am 25.11.2022
Beschreibung:Online Resource
DOI:10.1016/j.chemphys.2010.08.009