Path and cycle decompositions of dense graphs

We make progress on three long standing conjectures from the 1960s about path and cycle decompositions of graphs. Gallai conjectured that any connected graph on n vertices can be decomposed into at most ⌈n2⌉ paths, while a conjecture of Hajós states that any Eulerian graph on n vertices can be deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Girao, Antonio (VerfasserIn) , Granet, Bertille (VerfasserIn) , Kühn, Daniela (VerfasserIn) , Osthus, Deryk (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 May 2021
In: Journal of the London Mathematical Society
Year: 2021, Jahrgang: 104, Heft: 3, Pages: 1085-1134
ISSN:1469-7750
DOI:10.1112/jlms.12455
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/jlms.12455
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12455
Volltext
Verfasserangaben:António Girão, Bertille Granet, Daniela Kühn and Deryk Osthus

MARC

LEADER 00000caa a2200000 c 4500
001 1823726186
003 DE-627
005 20230117213241.0
007 cr uuu---uuuuu
008 221128s2021 xx |||||o 00| ||eng c
024 7 |a 10.1112/jlms.12455  |2 doi 
035 |a (DE-627)1823726186 
035 |a (DE-599)KXP1823726186 
035 |a (OCoLC)1360439636 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Girao, Antonio  |e VerfasserIn  |0 (DE-588)1256755230  |0 (DE-627)1800839561  |4 aut 
245 1 0 |a Path and cycle decompositions of dense graphs  |c António Girão, Bertille Granet, Daniela Kühn and Deryk Osthus 
264 1 |c 15 May 2021 
300 |a 50 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.11.2022 
520 |a We make progress on three long standing conjectures from the 1960s about path and cycle decompositions of graphs. Gallai conjectured that any connected graph on n vertices can be decomposed into at most ⌈n2⌉ paths, while a conjecture of Hajós states that any Eulerian graph on n vertices can be decomposed into at most ⌊n−12⌋ cycles. The Erdős-Gallai conjecture states that any graph on n vertices can be decomposed into O(n) cycles and edges. We show that if G is a sufficiently large graph on n vertices with linear minimum degree, then the following hold. (i)G can be decomposed into at most n2+o(n) paths. (ii)If G is Eulerian, then it can be decomposed into at most n2+o(n) cycles. (iii)G can be decomposed into at most 3n2+o(n) cycles and edges. If in addition G satisfies a weak expansion property, we asymptotically determine the required number of paths/cycles for each such G. (iv)G can be decomposed into maxodd(G)2,Δ(G)2+o(n) paths, where odd(G) is the number of odd-degree vertices of G. (v)If G is Eulerian, then it can be decomposed into Δ(G)2+o(n) cycles. All bounds in (i)-(v) are asymptotically best possible. 
650 4 |a 05C38 
650 4 |a 05C70 
650 4 |a 05D40 (primary) 
700 1 |a Granet, Bertille  |e VerfasserIn  |0 (DE-588)1274018277  |0 (DE-627)1823726569  |4 aut 
700 1 |a Kühn, Daniela  |d 1973-  |e VerfasserIn  |0 (DE-588)123412005  |0 (DE-627)082540500  |0 (DE-576)293697906  |4 aut 
700 1 |a Osthus, Deryk  |d 1974-  |e VerfasserIn  |0 (DE-588)12285702X  |0 (DE-627)08219744X  |0 (DE-576)293449856  |4 aut 
773 0 8 |i Enthalten in  |a London Mathematical Society  |t Journal of the London Mathematical Society  |d Oxford : Wiley, 1926  |g 104(2021), 3, Seite 1085-1134  |h Online-Ressource  |w (DE-627)270126953  |w (DE-600)1476428-3  |w (DE-576)078129079  |x 1469-7750  |7 nnas 
773 1 8 |g volume:104  |g year:2021  |g number:3  |g pages:1085-1134  |g extent:50  |a Path and cycle decompositions of dense graphs 
856 4 0 |u https://doi.org/10.1112/jlms.12455  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12455  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221128 
993 |a Article 
994 |a 2021 
998 |g 1274018277  |a Granet, Bertille  |m 1274018277:Granet, Bertille  |d 110000  |d 110300  |e 110000PG1274018277  |e 110300PG1274018277  |k 0/110000/  |k 1/110000/110300/  |p 2 
999 |a KXP-PPN1823726186  |e 4220980598 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Girao","given":"Antonio","roleDisplay":"VerfasserIn","display":"Girao, Antonio","role":"aut"},{"role":"aut","display":"Granet, Bertille","roleDisplay":"VerfasserIn","given":"Bertille","family":"Granet"},{"roleDisplay":"VerfasserIn","display":"Kühn, Daniela","role":"aut","family":"Kühn","given":"Daniela"},{"family":"Osthus","given":"Deryk","display":"Osthus, Deryk","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Path and cycle decompositions of dense graphs","title":"Path and cycle decompositions of dense graphs"}],"language":["eng"],"recId":"1823726186","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.11.2022"],"name":{"displayForm":["António Girão, Bertille Granet, Daniela Kühn and Deryk Osthus"]},"id":{"eki":["1823726186"],"doi":["10.1112/jlms.12455"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"15 May 2021"}],"relHost":[{"origin":[{"dateIssuedKey":"1926","publisher":"Wiley ; Cambridge Univ. Press ; Oxford University Press","dateIssuedDisp":"1926-","publisherPlace":"Oxford ; Cambridge ; Oxford"}],"id":{"issn":["1469-7750"],"doi":["10.1112/(ISSN)1469-7750"],"eki":["270126953"],"zdb":["1476428-3"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of the London Mathematical Society","title_sort":"Journal of the London Mathematical Society"}],"pubHistory":["1.1926 -"],"part":{"year":"2021","pages":"1085-1134","issue":"3","volume":"104","text":"104(2021), 3, Seite 1085-1134","extent":"50"},"disp":"London Mathematical SocietyJournal of the London Mathematical Society","note":["Gesehen am 16.08.17"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"role":"aut","display":"London Mathematical Society","roleDisplay":"VerfasserIn"}],"recId":"270126953"}],"physDesc":[{"extent":"50 S."}]} 
SRT |a GIRAOANTONPATHANDCYC1520