Efficient quantum state tomography with convolutional neural networks
Modern day quantum simulators can prepare a wide variety of quantum states but the accurate estimation of observables from tomographic measurement data often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distri...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
23 September 2022
|
| In: |
npj Quantum information
Year: 2022, Volume: 8, Pages: 1-8 |
| ISSN: | 2056-6387 |
| DOI: | 10.1038/s41534-022-00621-4 |
| Online Access: | Resolving-System, kostenfrei, Volltext: https://doi.org/10.1038/s41534-022-00621-4 Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41534-022-00621-4 |
| Author Notes: | Tobias Schmale, Moritz Reh and Martin Gärttner |
| Summary: | Modern day quantum simulators can prepare a wide variety of quantum states but the accurate estimation of observables from tomographic measurement data often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distribution over the outcomes of an informationally complete measurement in a variational manifold represented by a convolutional neural network. We show an excellent representability of prototypical ground- and steady states with this ansatz using a number of variational parameters that scales polynomially in system size. This compressed representation allows us to reconstruct states with high classical fidelities outperforming standard methods such as maximum likelihood estimation. Furthermore, it achieves a reduction of the estimation error of observables by up to an order of magnitude compared to their direct estimation from experimental data. |
|---|---|
| Item Description: | Gesehen am 29.11.2022 |
| Physical Description: | Online Resource |
| ISSN: | 2056-6387 |
| DOI: | 10.1038/s41534-022-00621-4 |