Efficient quantum state tomography with convolutional neural networks

Modern day quantum simulators can prepare a wide variety of quantum states but the accurate estimation of observables from tomographic measurement data often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmale, Tobias (VerfasserIn) , Reh, Moritz (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 23 September 2022
In: npj Quantum information
Year: 2022, Jahrgang: 8, Pages: 1-8
ISSN:2056-6387
DOI:10.1038/s41534-022-00621-4
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1038/s41534-022-00621-4
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41534-022-00621-4
Volltext
Verfasserangaben:Tobias Schmale, Moritz Reh and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1823826261
003 DE-627
005 20240110144330.0
007 cr uuu---uuuuu
008 221129s2022 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41534-022-00621-4  |2 doi 
035 |a (DE-627)1823826261 
035 |a (DE-599)KXP1823826261 
035 |a (OCoLC)1361670536 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Schmale, Tobias  |e VerfasserIn  |0 (DE-588)1262580714  |0 (DE-627)1810550181  |4 aut 
245 1 0 |a Efficient quantum state tomography with convolutional neural networks  |c Tobias Schmale, Moritz Reh and Martin Gärttner 
264 1 |c 23 September 2022 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.11.2022 
520 |a Modern day quantum simulators can prepare a wide variety of quantum states but the accurate estimation of observables from tomographic measurement data often poses a challenge. We tackle this problem by developing a quantum state tomography scheme which relies on approximating the probability distribution over the outcomes of an informationally complete measurement in a variational manifold represented by a convolutional neural network. We show an excellent representability of prototypical ground- and steady states with this ansatz using a number of variational parameters that scales polynomially in system size. This compressed representation allows us to reconstruct states with high classical fidelities outperforming standard methods such as maximum likelihood estimation. Furthermore, it achieves a reduction of the estimation error of observables by up to an order of magnitude compared to their direct estimation from experimental data. 
650 4 |a Computational science 
650 4 |a Information theory and computation 
650 4 |a Quantum simulation 
650 4 |a Qubits 
700 1 |a Reh, Moritz  |d 1995-  |e VerfasserIn  |0 (DE-588)1247844358  |0 (DE-627)1782431616  |4 aut 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t npj Quantum information  |d London : Nature Publ. Group, 2015  |g 8(2022), Artikel-ID 115, Seite 1-8  |h Online-Ressource  |w (DE-627)842609121  |w (DE-600)2841736-7  |w (DE-576)452922682  |x 2056-6387  |7 nnas  |a Efficient quantum state tomography with convolutional neural networks 
773 1 8 |g volume:8  |g year:2022  |g elocationid:115  |g pages:1-8  |g extent:8  |a Efficient quantum state tomography with convolutional neural networks 
856 4 0 |u https://doi.org/10.1038/s41534-022-00621-4  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41534-022-00621-4  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221129 
993 |a Article 
994 |a 2022 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |d 130000  |d 130200  |e 130000PG1047469529  |e 130000PG1047469529  |e 130200PG1047469529  |k 0/130000/  |k 0/130000/  |k 1/130000/130200/  |p 3  |y j 
998 |g 1247844358  |a Reh, Moritz  |m 1247844358:Reh, Moritz  |d 130000  |d 130700  |e 130000PR1247844358  |e 130700PR1247844358  |k 0/130000/  |k 1/130000/130700/  |p 2 
999 |a KXP-PPN1823826261  |e 422160767X 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1823826261","physDesc":[{"extent":"8 S."}],"id":{"eki":["1823826261"],"doi":["10.1038/s41534-022-00621-4"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"role":"aut","given":"Tobias","roleDisplay":"VerfasserIn","display":"Schmale, Tobias","family":"Schmale"},{"given":"Moritz","role":"aut","roleDisplay":"VerfasserIn","family":"Reh","display":"Reh, Moritz"},{"given":"Martin","role":"aut","roleDisplay":"VerfasserIn","display":"Gärttner, Martin","family":"Gärttner"}],"title":[{"title_sort":"Efficient quantum state tomography with convolutional neural networks","title":"Efficient quantum state tomography with convolutional neural networks"}],"note":["Gesehen am 29.11.2022"],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"23 September 2022"}],"relHost":[{"recId":"842609121","origin":[{"publisher":"Nature Publ. Group","dateIssuedDisp":"October 2015-","publisherPlace":"London"}],"pubHistory":["27 October 2015-"],"disp":"Efficient quantum state tomography with convolutional neural networksnpj Quantum information","id":{"issn":["2056-6387"],"zdb":["2841736-7"],"eki":["842609121"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"volume":"8","year":"2022","text":"8(2022), Artikel-ID 115, Seite 1-8","pages":"1-8","extent":"8"},"title":[{"title_sort":"npj Quantum information","title":"npj Quantum information"}]}],"name":{"displayForm":["Tobias Schmale, Moritz Reh and Martin Gärttner"]}} 
SRT |a SCHMALETOBEFFICIENTQ2320