Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001)

Background: Women undergoing cancer-related mastectomy and reconstruction are facing multiple treatment choices where post-surgical satisfaction with breasts is a key outcome. We developed and validated machine learning algorithms to predict patient-reported satisfaction with breasts at 2-year follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pfob, André (VerfasserIn) , Mehrara, Babak J. (VerfasserIn) , Nelson, Jonas A. (VerfasserIn) , Wilkins, Edwin G. (VerfasserIn) , Pusic, Andrea L. (VerfasserIn) , Sidey-Gibbons, Chris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 September 2021
In: The breast
Year: 2021, Jahrgang: 60, Pages: 111-122
ISSN:1532-3080
DOI:10.1016/j.breast.2021.09.009
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.breast.2021.09.009
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0960977621004665
Volltext
Verfasserangaben:André Pfob, Babak J. Mehrara, Jonas A. Nelson, Edwin G. Wilkins, Andrea L. Pusic, Chris Sidey-Gibbons

MARC

LEADER 00000caa a2200000 c 4500
001 1823875742
003 DE-627
005 20240326080322.0
007 cr uuu---uuuuu
008 221129s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.breast.2021.09.009  |2 doi 
035 |a (DE-627)1823875742 
035 |a (DE-599)KXP1823875742 
035 |a (OCoLC)1361713918 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Pfob, André  |e VerfasserIn  |0 (DE-588)1167798945  |0 (DE-627)1031607064  |0 (DE-576)51127338X  |4 aut 
245 1 0 |a Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001)  |c André Pfob, Babak J. Mehrara, Jonas A. Nelson, Edwin G. Wilkins, Andrea L. Pusic, Chris Sidey-Gibbons 
264 1 |c 29 September 2021 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.11.2022 
520 |a Background: Women undergoing cancer-related mastectomy and reconstruction are facing multiple treatment choices where post-surgical satisfaction with breasts is a key outcome. We developed and validated machine learning algorithms to predict patient-reported satisfaction with breasts at 2-year follow-up to better inform the decision-making process for women with breast cancer. - Methods: We trained, tested, and validated three machine learning algorithms (logistic regression (LR) with elastic net penalty, Extreme Gradient Boosting (XGBoost) tree, and neural network) to predict clinically important differences in satisfaction with breasts at 2-year follow-up using the validated BREAST-Q. We used data from 1553 women undergoing cancer-related mastectomy and reconstruction who were followed-up for two years at eleven study sites in North America from 2011 to 2016. 10-fold cross-validation was used to train and test the algorithms on data from 10 of the 11 sites which were further validated using the additional site's data. Area-under-the-receiver-operating-characteristics-curve (AUC) was the primary outcome measure. - Results: Of 1553 women, 702 (45.2%) experienced an improved satisfaction with breasts and 422 (27.2%) a decreased satisfaction. In the validation set (n = 221), the algorithms showed equally high performance to predict improved or decreased satisfaction with breasts (all P > 0.05): For improved satisfaction AUCs were 0.86-0.87 and for decreased satisfaction AUCs were 0.84-0.85. - Conclusion: Long-term, individual patient-reported outcomes for women undergoing mastectomy and breast reconstruction can be accurately predicted using machine learning algorithms. Our algorithms may be used to better inform clinical treatment decisions for these patients by providing accurate estimates of expected quality of life. 
650 4 |a Breast reconstruction 
650 4 |a Breast surgery 
650 4 |a Decision-making 
650 4 |a Individualized treatment 
650 4 |a INSPiRED 
650 4 |a Machine learning 
700 1 |a Mehrara, Babak J.  |e VerfasserIn  |4 aut 
700 1 |a Nelson, Jonas A.  |e VerfasserIn  |4 aut 
700 1 |a Wilkins, Edwin G.  |e VerfasserIn  |4 aut 
700 1 |a Pusic, Andrea L.  |e VerfasserIn  |0 (DE-588)1037126424  |0 (DE-627)752244728  |0 (DE-576)39113308X  |4 aut 
700 1 |a Sidey-Gibbons, Chris  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t The breast  |d Amsterdam [u.a.] : Elsevier, 1992  |g 60(2021), Seite 111-122  |h Online-Ressource  |w (DE-627)320475042  |w (DE-600)2009043-2  |w (DE-576)103868151  |x 1532-3080  |7 nnas  |a Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001) 
773 1 8 |g volume:60  |g year:2021  |g pages:111-122  |g extent:12  |a Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001) 
856 4 0 |u https://doi.org/10.1016/j.breast.2021.09.009  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0960977621004665  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20221129 
993 |a Article 
994 |a 2021 
998 |g 1167798945  |a Pfob, André  |m 1167798945:Pfob, André  |d 910000  |d 910400  |e 910000PP1167798945  |e 910400PP1167798945  |k 0/910000/  |k 1/910000/910400/  |p 1  |x j 
999 |a KXP-PPN1823875742  |e 4221879645 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"29 September 2021"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"relHost":[{"recId":"320475042","pubHistory":["1.1992 -"],"language":["eng"],"origin":[{"publisher":"Elsevier ; Harcourt","dateIssuedDisp":"1992-","publisherPlace":"Amsterdam [u.a.] ; Burlington, Mass.","dateIssuedKey":"1992"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2021","extent":"12","pages":"111-122","text":"60(2021), Seite 111-122","volume":"60"},"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["320475042"],"zdb":["2009043-2"],"issn":["1532-3080"]},"title":[{"title":"The breast","title_sort":"breast"}],"disp":"Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001)The breast","note":["Gesehen am 27.04.2020","Fortsetzung der Druck-Ausgabe"]}],"person":[{"roleDisplay":"VerfasserIn","family":"Pfob","given":"André","role":"aut","display":"Pfob, André"},{"roleDisplay":"VerfasserIn","family":"Mehrara","given":"Babak J.","role":"aut","display":"Mehrara, Babak J."},{"family":"Nelson","roleDisplay":"VerfasserIn","display":"Nelson, Jonas A.","role":"aut","given":"Jonas A."},{"given":"Edwin G.","display":"Wilkins, Edwin G.","role":"aut","family":"Wilkins","roleDisplay":"VerfasserIn"},{"given":"Andrea L.","display":"Pusic, Andrea L.","role":"aut","family":"Pusic","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Sidey-Gibbons, Chris","given":"Chris","roleDisplay":"VerfasserIn","family":"Sidey-Gibbons"}],"physDesc":[{"extent":"12 S."}],"name":{"displayForm":["André Pfob, Babak J. Mehrara, Jonas A. Nelson, Edwin G. Wilkins, Andrea L. Pusic, Chris Sidey-Gibbons"]},"note":["Gesehen am 29.11.2022"],"id":{"doi":["10.1016/j.breast.2021.09.009"],"eki":["1823875742"]},"title":[{"title":"Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001)","title_sort":"Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001)"}],"recId":"1823875742"} 
SRT |a PFOBANDREMMACHINELEA2920