Quantum corrections to the classical model of the atom-field system
The nonlinear-oscillating system in action-angle variables is characterized by the dependence of frequency of oscillation ω(I) on action I. Periodic perturbation is capable of realizing in the system a stable nonlinear resonance at which the action I adapts to the resonance condition ω(I0)≃ω, that i...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
18 October 2011
|
| In: |
Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2011, Jahrgang: 84, Heft: 4, Pages: 1-8 |
| ISSN: | 1550-2376 |
| DOI: | 10.1103/PhysRevE.84.046606 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevE.84.046606 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.84.046606 |
| Verfasserangaben: | A. Ugulava, G. Mchedlishvili, S. Chkhaidze, and L. Chotorlishvili |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1824044372 | ||
| 003 | DE-627 | ||
| 005 | 20230710101144.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 221130s2011 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevE.84.046606 |2 doi | |
| 035 | |a (DE-627)1824044372 | ||
| 035 | |a (DE-599)KXP1824044372 | ||
| 035 | |a (OCoLC)1389744665 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Ugulava, Archil |e VerfasserIn |0 (DE-588)1274237947 |0 (DE-627)1824045050 |4 aut | |
| 245 | 1 | 0 | |a Quantum corrections to the classical model of the atom-field system |c A. Ugulava, G. Mchedlishvili, S. Chkhaidze, and L. Chotorlishvili |
| 264 | 1 | |c 18 October 2011 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 30.11.2022 | ||
| 520 | |a The nonlinear-oscillating system in action-angle variables is characterized by the dependence of frequency of oscillation ω(I) on action I. Periodic perturbation is capable of realizing in the system a stable nonlinear resonance at which the action I adapts to the resonance condition ω(I0)≃ω, that is, “sticking” in the resonance frequency. For a particular physical problem there may be a case when I≫ℏ is the classical quantity, whereas its correction ΔI≃ℏ is the quantum quantity. Naturally, dynamics of ΔI is described by the quantum equation of motion. In particular, in the moderate nonlinearity approximation ɛ≪(dω/dI)(I/ω)≪1/ɛ, where ɛ is the small parameter, the description of quantum state is reduced to the solution of the Mathieu-Schrödinger equation. The state formed as a result of sticking in resonance is an eigenstate of the operator ΔˆI that does not commute with the Hamiltonian ˆH. Expanding the eigenstate wave functions in Hamiltonian eigenfunctions, one can obtain a probability distribution of energy level population. Thus, an inverse level population for times lower than the relaxation time can be obtained. | ||
| 700 | 1 | |a Mchedlishvili, G. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Chkhaidze, S. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Chotorlishvili, Levan |d 1972- |e VerfasserIn |0 (DE-588)1084654423 |0 (DE-627)848637445 |0 (DE-576)456594930 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review. E, Statistical, nonlinear, and soft matter physics |d College Park, Md. : APS, 1993 |g 84(2011), 4, Artikel-ID 046606, Seite 1-8 |h Online-Ressource |w (DE-627)268757593 |w (DE-600)1472725-0 |w (DE-576)077609514 |x 1550-2376 |7 nnas |a Quantum corrections to the classical model of the atom-field system |
| 773 | 1 | 8 | |g volume:84 |g year:2011 |g number:4 |g elocationid:046606 |g pages:1-8 |g extent:8 |a Quantum corrections to the classical model of the atom-field system |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevE.84.046606 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevE.84.046606 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20221130 | ||
| 993 | |a Article | ||
| 994 | |a 2011 | ||
| 998 | |g 1084654423 |a Chotorlishvili, Levan |m 1084654423:Chotorlishvili, Levan |d 130000 |d 130300 |e 130000PC1084654423 |e 130300PC1084654423 |k 0/130000/ |k 1/130000/130300/ |p 4 |y j | ||
| 999 | |a KXP-PPN1824044372 |e 4222197572 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["A. Ugulava, G. Mchedlishvili, S. Chkhaidze, and L. Chotorlishvili"]},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"18 October 2011"}],"id":{"doi":["10.1103/PhysRevE.84.046606"],"eki":["1824044372"]},"physDesc":[{"extent":"8 S."}],"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review","partname":"Statistical, nonlinear, and soft matter physics"}],"note":["Gesehen am 15.09.15"],"disp":"Quantum corrections to the classical model of the atom-field systemPhysical review. E, Statistical, nonlinear, and soft matter physics","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"268757593","language":["eng"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"American Physical Society"}],"pubHistory":["Volume 47, issue 1,1, January 1993-vol. 92, issue 6, December 2015"],"part":{"issue":"4","pages":"1-8","year":"2011","extent":"8","volume":"84","text":"84(2011), 4, Artikel-ID 046606, Seite 1-8"},"titleAlt":[{"title":"Physical review / E"},{"title":"Statistical physics, plasmas, fluids, and related interdisciplinary topics"},{"title":"E online"}],"name":{"displayForm":["publ. by The American Physical Society"]},"origin":[{"dateIssuedDisp":"January 1993-December 2015","publisher":"APS","publisherPlace":"College Park, Md."}],"id":{"issn":["1550-2376"],"eki":["268757593"],"zdb":["1472725-0"]},"physDesc":[{"extent":"Online-Ressource"}]}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Ugulava, Archil","given":"Archil","family":"Ugulava"},{"roleDisplay":"VerfasserIn","display":"Mchedlishvili, G.","role":"aut","family":"Mchedlishvili","given":"G."},{"family":"Chkhaidze","given":"S.","roleDisplay":"VerfasserIn","display":"Chkhaidze, S.","role":"aut"},{"given":"Levan","family":"Chotorlishvili","role":"aut","display":"Chotorlishvili, Levan","roleDisplay":"VerfasserIn"}],"title":[{"title":"Quantum corrections to the classical model of the atom-field system","title_sort":"Quantum corrections to the classical model of the atom-field system"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 30.11.2022"],"recId":"1824044372","language":["eng"]} | ||
| SRT | |a UGULAVAARCQUANTUMCOR1820 | ||