Instability of all regular stationary solutions to reaction-diffusion-ODE systems

A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cygan, Szymon (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Karch, Grzegorz (VerfasserIn) , Suzuki, Kanako (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 August 2022
In: Journal of differential equations
Year: 2022, Jahrgang: 337, Pages: 460-482
ISSN:1090-2732
DOI:10.1016/j.jde.2022.08.007
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.jde.2022.08.007
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S002203962200479X
Volltext
Verfasserangaben:Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki

MARC

LEADER 00000caa a2200000 c 4500
001 1826446818
003 DE-627
005 20250110020535.0
007 cr uuu---uuuuu
008 221207s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2022.08.007  |2 doi 
035 |a (DE-627)1826446818 
035 |a (DE-599)KXP1826446818 
035 |a (OCoLC)1361670380 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Cygan, Szymon  |e VerfasserIn  |0 (DE-588)1268443352  |0 (DE-627)1816972266  |4 aut 
245 1 0 |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems  |c Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki 
264 1 |c 28 August 2022 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.12.2022 
520 |a A general system of several ordinary differential equations coupled with a reaction-diffusion equation in a bounded domain with zero-flux boundary condition is studied in the context of pattern formation. These initial-boundary value problems may have regular (i.e. sufficiently smooth) stationary solutions. This class of close-to-equilibrium patterns includes stationary solutions that emerge due to the Turing instability of a spatially constant stationary solution. The main result of this work is instability of all regular patterns. It suggests that stable stationary solutions arising in models with non-diffusive components must be far-from-equilibrium exhibiting singularities. Such discontinuous stationary solutions have been considered in our parallel work (Cygan et al., 2021 [4]). 
650 4 |a patterns 
650 4 |a Reaction-diffusion equations 
650 4 |a Stability 
650 4 |a Stationary solutions 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |8 1\p  |a Karch, Grzegorz  |e VerfasserIn  |0 (DE-588)1119925223  |0 (DE-627)873033469  |0 (DE-576)409787655  |4 aut 
700 1 |8 2\p  |a Suzuki, Kanako  |e VerfasserIn  |0 (DE-588)1119925789  |0 (DE-627)873637720  |0 (DE-576)409787663  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 337(2022), Seite 460-482  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems 
773 1 8 |g volume:337  |g year:2022  |g pages:460-482  |g extent:23  |a Instability of all regular stationary solutions to reaction-diffusion-ODE systems 
856 4 0 |u https://doi.org/10.1016/j.jde.2022.08.007  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S002203962200479X  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20221207 
993 |a Article 
994 |a 2022 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1826446818  |e 4228052002 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"physDesc":[{"extent":"23 S."}],"name":{"displayForm":["Szymon Cygan, Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki"]},"relHost":[{"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"pubHistory":["1.1965 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"dateIssuedDisp":"1965-","publisher":"Elsevier ; Academic Press ; Academic Press","publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedKey":"1965"}],"note":["Gesehen am 16.07.13"],"recId":"266892566","id":{"issn":["1090-2732"],"zdb":["1469173-5"],"eki":["266892566"]},"physDesc":[{"extent":"Online-Ressource"}],"disp":"Instability of all regular stationary solutions to reaction-diffusion-ODE systemsJournal of differential equations","part":{"year":"2022","text":"337(2022), Seite 460-482","volume":"337","pages":"460-482","extent":"23"},"language":["eng"]}],"recId":"1826446818","id":{"eki":["1826446818"],"doi":["10.1016/j.jde.2022.08.007"]},"note":["Gesehen am 07.12.2022"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"28 August 2022"}],"person":[{"display":"Cygan, Szymon","given":"Szymon","family":"Cygan","role":"aut"},{"display":"Marciniak-Czochra, Anna","given":"Anna","family":"Marciniak-Czochra","role":"aut"},{"display":"Karch, Grzegorz","given":"Grzegorz","family":"Karch","role":"aut"},{"family":"Suzuki","given":"Kanako","display":"Suzuki, Kanako","role":"aut"}],"title":[{"title":"Instability of all regular stationary solutions to reaction-diffusion-ODE systems","title_sort":"Instability of all regular stationary solutions to reaction-diffusion-ODE systems"}]} 
SRT |a CYGANSZYMOINSTABILIT2820