Improving deep metric learning by divide and conquer

Deep metric learning (DML) is a cornerstone of many computer vision applications. It aims at learning a mapping from the input domain to an embedding space, where semantically similar objects are located nearby and dissimilar objects far from another. The target similarity on the training data is de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sanakoyeu, Artsiom (VerfasserIn) , Ma, Pingchuan (VerfasserIn) , Tschernezki, Vadim (VerfasserIn) , Ommer, Björn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [01 November 2022]
In: IEEE transactions on pattern analysis and machine intelligence
Year: 2022, Jahrgang: 44, Heft: 11, Pages: 8306-8320
ISSN:1939-3539
DOI:10.1109/TPAMI.2021.3113270
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1109/TPAMI.2021.3113270
Volltext
Verfasserangaben:Artsiom Sanakoyeu, Pingchuan Ma, Vadim Tschernezki, Björn Ommer

MARC

LEADER 00000caa a2200000 c 4500
001 1826723757
003 DE-627
005 20230118120658.0
007 cr uuu---uuuuu
008 221209s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3113270  |2 doi 
035 |a (DE-627)1826723757 
035 |a (DE-599)KXP1826723757 
035 |a (OCoLC)1361670331 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Sanakoyeu, Artsiom  |e VerfasserIn  |0 (DE-588)1152280767  |0 (DE-627)1013760638  |0 (DE-576)499782712  |4 aut 
245 1 0 |a Improving deep metric learning by divide and conquer  |c Artsiom Sanakoyeu, Pingchuan Ma, Vadim Tschernezki, Björn Ommer 
264 1 |c [01 November 2022] 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date of publication: 16 September 2021 
500 |a Gesehen am 09.12.2022 
520 |a Deep metric learning (DML) is a cornerstone of many computer vision applications. It aims at learning a mapping from the input domain to an embedding space, where semantically similar objects are located nearby and dissimilar objects far from another. The target similarity on the training data is defined by user in form of ground-truth class labels. However, while the embedding space learns to mimic the user-provided similarity on the training data, it should also generalize to novel categories not seen during training. Besides user-provided groundtruth training labels, a lot of additional visual factors (such as viewpoint changes or shape peculiarities) exist and imply different notions of similarity between objects, affecting the generalization on the images unseen during training. However, existing approaches usually directly learn a single embedding space on all available training data, struggling to encode all different types of relationships, and do not generalize well. We propose to build a more expressive representation by jointly splitting the embedding space and the data hierarchically into smaller sub-parts. We successively focus on smaller subsets of the training data, reducing its variance and learning a different embedding subspace for each data subset. Moreover, the subspaces are learned jointly to cover not only the intricacies, but the breadth of the data as well. Only after that, we build the final embedding from the subspaces in the conquering stage. The proposed algorithm acts as a transparent wrapper that can be placed around arbitrary existing DML methods. Our approach significantly improves upon the state-of-the-art on image retrieval, clustering, and re-identification tasks evaluated using CUB200-2011, CARS196, Stanford Online Products, In-shop Clothes, and PKU VehicleID datasets. 
650 4 |a computer vision 
650 4 |a deep learning 
650 4 |a Deep metric learning 
650 4 |a image retrieval 
650 4 |a Image retrieval 
650 4 |a Learning systems 
650 4 |a Measurement 
650 4 |a Prototypes 
650 4 |a representation learning 
650 4 |a similarity learning 
650 4 |a Training 
650 4 |a Training data 
650 4 |a Visualization 
700 1 |a Ma, Pingchuan  |e VerfasserIn  |0 (DE-588)1275161146  |0 (DE-627)1826724486  |4 aut 
700 1 |a Tschernezki, Vadim  |e VerfasserIn  |4 aut 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on pattern analysis and machine intelligence  |d New York, NY : IEEE, 1979  |g 44(2022), 11 vom: Nov., Seite 8306-8320  |h Online-Ressource  |w (DE-627)324486421  |w (DE-600)2027336-8  |w (DE-576)094110980  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g month:11  |g pages:8306-8320  |g extent:15  |a Improving deep metric learning by divide and conquer 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3113270  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20221209 
993 |a Article 
994 |a 2022 
998 |g 1034893106  |a Ommer, Björn  |m 1034893106:Ommer, Björn  |d 110000  |e 110000PO1034893106  |k 0/110000/  |p 4  |y j 
998 |g 1275161146  |a Ma, Pingchuan  |m 1275161146:Ma, Pingchuan  |d 700000  |d 708000  |e 700000PM1275161146  |e 708000PM1275161146  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1152280767  |a Sanakoyeu, Artsiom  |m 1152280767:Sanakoyeu, Artsiom  |p 1  |x j 
999 |a KXP-PPN1826723757  |e 4228747221 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"subtitle":"TPAMI","title":"IEEE transactions on pattern analysis and machine intelligence","title_sort":"IEEE transactions on pattern analysis and machine intelligence"}],"pubHistory":["1.1979 -"],"part":{"volume":"44","text":"44(2022), 11 vom: Nov., Seite 8306-8320","extent":"15","year":"2022","pages":"8306-8320","issue":"11"},"titleAlt":[{"title":"Transactions on pattern analysis and machine intelligence"},{"title":"TPAMI"}],"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence","note":["Gesehen am 07. März 2019"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"324486421","corporate":[{"display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn","role":"aut"}],"language":["eng"],"origin":[{"publisher":"IEEE","dateIssuedKey":"1979","dateIssuedDisp":"1979-","publisherPlace":"New York, NY"}],"id":{"issn":["1939-3539"],"eki":["324486421"],"zdb":["2027336-8"]},"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"15 S."}],"name":{"displayForm":["Artsiom Sanakoyeu, Pingchuan Ma, Vadim Tschernezki, Björn Ommer"]},"id":{"eki":["1826723757"],"doi":["10.1109/TPAMI.2021.3113270"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"[01 November 2022]"}],"language":["eng"],"recId":"1826723757","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Date of publication: 16 September 2021","Gesehen am 09.12.2022"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Sanakoyeu, Artsiom","given":"Artsiom","family":"Sanakoyeu"},{"family":"Ma","given":"Pingchuan","display":"Ma, Pingchuan","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Tschernezki","given":"Vadim","roleDisplay":"VerfasserIn","display":"Tschernezki, Vadim","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Ommer, Björn","given":"Björn","family":"Ommer"}],"title":[{"title_sort":"Improving deep metric learning by divide and conquer","title":"Improving deep metric learning by divide and conquer"}]} 
SRT |a SANAKOYEUAIMPROVINGD0120