Predicting anxiety in cancer survivors presenting to primary care: a machine learning approach accounting for physical comorbidity

Background The purpose of this study was to explore predictors for anxiety as the most common form of psychological distress in cancer survivors while accounting for physical comorbidity. Methods We conducted a secondary data analysis of a large study within the German National Cancer Plan which enr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haun, Markus W. (VerfasserIn) , Simon, Laura (VerfasserIn) , Sklenarova, Halina (VerfasserIn) , Zimmermann-Schlegel, Verena (VerfasserIn) , Friederich, Hans-Christoph (VerfasserIn) , Hartmann, Mechthild (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Cancer medicine
Year: 2021, Jahrgang: 10, Heft: 14, Pages: 5001-5016
ISSN:2045-7634
DOI:10.1002/cam4.4048
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/cam4.4048
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/cam4.4048
Volltext
Verfasserangaben:Markus W. Haun, Laura Simon, Halina Sklenarova, Verena Zimmermann-Schlegel, Hans-Christoph Friederich, Mechthild Hartmann

MARC

LEADER 00000caa a2200000 c 4500
001 1826816186
003 DE-627
005 20230428033627.0
007 cr uuu---uuuuu
008 221212s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/cam4.4048  |2 doi 
035 |a (DE-627)1826816186 
035 |a (DE-599)KXP1826816186 
035 |a (OCoLC)1360439252 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Haun, Markus W.  |d 1981-  |e VerfasserIn  |0 (DE-588)1022470019  |0 (DE-627)716989522  |0 (DE-576)362764190  |4 aut 
245 1 0 |a Predicting anxiety in cancer survivors presenting to primary care  |b a machine learning approach accounting for physical comorbidity  |c Markus W. Haun, Laura Simon, Halina Sklenarova, Verena Zimmermann-Schlegel, Hans-Christoph Friederich, Mechthild Hartmann 
264 1 |c 2021 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.12.2022 
520 |a Background The purpose of this study was to explore predictors for anxiety as the most common form of psychological distress in cancer survivors while accounting for physical comorbidity. Methods We conducted a secondary data analysis of a large study within the German National Cancer Plan which enrolled primary care cancer survivors diagnosed with colon, prostatic, or breast cancer. We selected candidate predictors based on a systematic MEDLINE search. Using supervised machine learning, we developed a prediction model for anxiety by splitting the data into a 70% training set and a 30% test set and further split the training set into 10-folds for cross-validating the hyperparameter tuning step during model selection. We fit six different regression models, selected the model that maximized the root mean square error (RMSE) and fit the selected model to the entire training set. Finally, we evaluated the model performance on the holdout test set. Results In total, data from 496 cancer survivors were analyzed. The LASSO model (α = 1.0) with weakly penalized model complexity (λ = 0.015) slightly outperformed all other models (RMSE = 0.370). Physical symptoms, namely, fatigue/weakness (β = 0.18), insomnia (β = 0.12), and pain (β = 0.04), were the most important predictors, while the degree of physical comorbidity was negligible. Conclusions Prediction of clinically significant anxiety in cancer survivors using readily available predictors is feasible. The findings highlight the need for considering cancer survivors’ physical functioning regardless of the degree of comorbidity when assessing their psychological well-being. The generalizability of the model to other populations should be investigated in future external validations. 
650 4 |a anxiety 
650 4 |a cancer survivors 
650 4 |a comorbidity 
650 4 |a health services research 
650 4 |a machine learning 
650 4 |a prediction 
650 4 |a primary care 
700 1 |a Simon, Laura  |e VerfasserIn  |4 aut 
700 1 |a Sklenarova, Halina  |e VerfasserIn  |4 aut 
700 1 |a Zimmermann-Schlegel, Verena  |d 1983-  |e VerfasserIn  |0 (DE-588)129200905  |0 (DE-627)39070606X  |0 (DE-576)297536877  |4 aut 
700 1 |a Friederich, Hans-Christoph  |d 1971-  |e VerfasserIn  |0 (DE-588)122302524  |0 (DE-627)70585311X  |0 (DE-576)293208417  |4 aut 
700 1 |a Hartmann, Mechthild  |e VerfasserIn  |0 (DE-588)1038204755  |0 (DE-627)756758920  |0 (DE-576)392190265  |4 aut 
773 0 8 |i Enthalten in  |t Cancer medicine  |d Hoboken, NJ : Wiley, 2012  |g 10(2021), 14, Seite 5001-5016  |h Online-Ressource  |w (DE-627)71860153X  |w (DE-600)2659751-2  |w (DE-576)366682164  |x 2045-7634  |7 nnas  |a Predicting anxiety in cancer survivors presenting to primary care a machine learning approach accounting for physical comorbidity 
773 1 8 |g volume:10  |g year:2021  |g number:14  |g pages:5001-5016  |g extent:16  |a Predicting anxiety in cancer survivors presenting to primary care a machine learning approach accounting for physical comorbidity 
856 4 0 |u https://doi.org/10.1002/cam4.4048  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/cam4.4048  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221212 
993 |a Article 
994 |a 2021 
998 |g 1038204755  |a Hartmann, Mechthild  |m 1038204755:Hartmann, Mechthild  |d 910000  |d 910100  |e 910000PH1038204755  |e 910100PH1038204755  |k 0/910000/  |k 1/910000/910100/  |p 6  |y j 
998 |g 122302524  |a Friederich, Hans-Christoph  |m 122302524:Friederich, Hans-Christoph  |d 910000  |d 910100  |e 910000PF122302524  |e 910100PF122302524  |k 0/910000/  |k 1/910000/910100/  |p 5 
998 |g 129200905  |a Zimmermann-Schlegel, Verena  |m 129200905:Zimmermann-Schlegel, Verena  |d 910000  |d 910100  |e 910000PZ129200905  |e 910100PZ129200905  |k 0/910000/  |k 1/910000/910100/  |p 4 
998 |g 1022470019  |a Haun, Markus W.  |m 1022470019:Haun, Markus W.  |d 910000  |d 910100  |e 910000PH1022470019  |e 910100PH1022470019  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1826816186  |e 4229122349 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"physDesc":[{"extent":"16 S."}],"title":[{"title_sort":"Predicting anxiety in cancer survivors presenting to primary care","title":"Predicting anxiety in cancer survivors presenting to primary care","subtitle":"a machine learning approach accounting for physical comorbidity"}],"name":{"displayForm":["Markus W. Haun, Laura Simon, Halina Sklenarova, Verena Zimmermann-Schlegel, Hans-Christoph Friederich, Mechthild Hartmann"]},"note":["Gesehen am 12.12.2022"],"recId":"1826816186","id":{"eki":["1826816186"],"doi":["10.1002/cam4.4048"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"2021"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Markus W.","role":"aut","display":"Haun, Markus W.","family":"Haun"},{"given":"Laura","role":"aut","display":"Simon, Laura","family":"Simon"},{"given":"Halina","role":"aut","family":"Sklenarova","display":"Sklenarova, Halina"},{"given":"Verena","role":"aut","display":"Zimmermann-Schlegel, Verena","family":"Zimmermann-Schlegel"},{"given":"Hans-Christoph","role":"aut","display":"Friederich, Hans-Christoph","family":"Friederich"},{"given":"Mechthild","role":"aut","family":"Hartmann","display":"Hartmann, Mechthild"}],"relHost":[{"part":{"volume":"10","pages":"5001-5016","text":"10(2021), 14, Seite 5001-5016","year":"2021","extent":"16","issue":"14"},"disp":"Predicting anxiety in cancer survivors presenting to primary care a machine learning approach accounting for physical comorbidityCancer medicine","pubHistory":["1.2012 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"71860153X","note":["Gesehen am 07.05.13"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Cancer medicine","title":"Cancer medicine"}],"id":{"issn":["2045-7634"],"eki":["71860153X"],"zdb":["2659751-2"]},"origin":[{"dateIssuedKey":"2012","publisherPlace":"Hoboken, NJ","dateIssuedDisp":"2012-","publisher":"Wiley"}]}]} 
SRT |a HAUNMARKUSPREDICTING2021