Fractional cycle decompositions in hypergraphs

We prove that for any integer and , there is an integer such that any k-uniform hypergraph on n vertices with minimum codegree at least has a fractional decomposition into (tight) cycles of length (-cycles for short) whenever and n is large in terms of . This is essentially tight. This immediately y...

Full description

Saved in:
Bibliographic Details
Main Authors: Joos, Felix (Author) , Kühn, Marcus (Author)
Format: Article (Journal)
Language:English
Published: 14 December 2021
In: Random structures & algorithms
Year: 2022, Volume: 61, Issue: 3, Pages: 425-443
ISSN:1098-2418
DOI:10.1002/rsa.21070
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/rsa.21070
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.21070
Get full text
Author Notes:Felix Joos, Marcus Kühn

MARC

LEADER 00000caa a2200000 c 4500
001 1826817042
003 DE-627
005 20230117203132.0
007 cr uuu---uuuuu
008 221212s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/rsa.21070  |2 doi 
035 |a (DE-627)1826817042 
035 |a (DE-599)KXP1826817042 
035 |a (OCoLC)1360436668 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Joos, Felix  |d 1989-  |e VerfasserIn  |0 (DE-588)1075006171  |0 (DE-627)832846244  |0 (DE-576)442747438  |4 aut 
245 1 0 |a Fractional cycle decompositions in hypergraphs  |c Felix Joos, Marcus Kühn 
264 1 |c 14 December 2021 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.12.2022 
520 |a We prove that for any integer and , there is an integer such that any k-uniform hypergraph on n vertices with minimum codegree at least has a fractional decomposition into (tight) cycles of length (-cycles for short) whenever and n is large in terms of . This is essentially tight. This immediately yields also approximate integral decompositions for these hypergraphs into -cycles. Moreover, for graphs this even guarantees integral decompositions into -cycles and solves a problem posed by Glock, Kühn, and Osthus. For our proof, we introduce a new method for finding a set of -cycles such that every edge is contained in roughly the same number of -cycles from this set by exploiting that certain Markov chains are rapidly mixing. 
650 4 |a cycles 
650 4 |a hypergraph decompositions 
650 4 |a random walk 
700 1 |a Kühn, Marcus  |d 1992-  |e VerfasserIn  |0 (DE-588)1262516110  |0 (DE-627)1810215870  |4 aut 
773 0 8 |i Enthalten in  |t Random structures & algorithms  |d New York, NY [u.a.] : Wiley, 1990  |g 61(2022), 3, Seite 425-443  |h Online-Ressource  |w (DE-627)306711141  |w (DE-600)1500812-5  |w (DE-576)082436185  |x 1098-2418  |7 nnas  |a Fractional cycle decompositions in hypergraphs 
773 1 8 |g volume:61  |g year:2022  |g number:3  |g pages:425-443  |g extent:19  |a Fractional cycle decompositions in hypergraphs 
856 4 0 |u https://doi.org/10.1002/rsa.21070  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.21070  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221212 
993 |a Article 
994 |a 2022 
998 |g 1262516110  |a Kühn, Marcus  |m 1262516110:Kühn, Marcus  |d 110000  |d 110300  |e 110000PK1262516110  |e 110300PK1262516110  |k 0/110000/  |k 1/110000/110300/  |p 2  |y j 
998 |g 1075006171  |a Joos, Felix  |m 1075006171:Joos, Felix  |d 110000  |d 110300  |d 700000  |d 728500  |e 110000PJ1075006171  |e 110300PJ1075006171  |e 700000PJ1075006171  |e 728500PJ1075006171  |k 0/110000/  |k 1/110000/110300/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1826817042  |e 4229124570 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"note":["Gesehen am 12.12.2022"],"physDesc":[{"extent":"19 S."}],"relHost":[{"language":["eng"],"disp":"Fractional cycle decompositions in hypergraphsRandom structures & algorithms","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 17.02.05"],"origin":[{"dateIssuedKey":"1990","dateIssuedDisp":"1990-","publisher":"Wiley","publisherPlace":"New York, NY [u.a.]"}],"titleAlt":[{"title":"Random structures and algorithms"}],"title":[{"title_sort":"Random structures & algorithms","title":"Random structures & algorithms"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"volume":"61","text":"61(2022), 3, Seite 425-443","extent":"19","year":"2022","pages":"425-443","issue":"3"},"pubHistory":["1.1990 -"],"id":{"doi":["10.1002/(ISSN)1098-2418"],"issn":["1098-2418"],"zdb":["1500812-5"],"eki":["306711141"]},"recId":"306711141"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"14 December 2021"}],"title":[{"title_sort":"Fractional cycle decompositions in hypergraphs","title":"Fractional cycle decompositions in hypergraphs"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","given":"Felix","roleDisplay":"VerfasserIn","display":"Joos, Felix","family":"Joos"},{"family":"Kühn","roleDisplay":"VerfasserIn","given":"Marcus","display":"Kühn, Marcus","role":"aut"}],"name":{"displayForm":["Felix Joos, Marcus Kühn"]},"id":{"eki":["1826817042"],"doi":["10.1002/rsa.21070"]},"recId":"1826817042"} 
SRT |a JOOSFELIXKFRACTIONAL1420