Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections

Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kriegsmann, Katharina (VerfasserIn) , Lobers, Frithjof (VerfasserIn) , Zgorzelski, Christiane (VerfasserIn) , Kriegsmann, Jörg (VerfasserIn) , Janßen, Charlotte (VerfasserIn) , Meliß, Rolf Rüdiger (VerfasserIn) , Muley, Thomas (VerfasserIn) , Sack, Ulrich (VerfasserIn) , Steinbuß, Georg (VerfasserIn) , Kriegsmann, Mark (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 November 2022
In: Frontiers in oncology
Year: 2022, Jahrgang: 12, Pages: 1-11
ISSN:2234-943X
DOI:10.3389/fonc.2022.1022967
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3389/fonc.2022.1022967
Verlag, kostenfrei, Volltext: https://www.frontiersin.org/articles/10.3389/fonc.2022.1022967
Volltext
Verfasserangaben:Katharina Kriegsmann, Frithjof Lobers, Christiane Zgorzelski, Jörg Kriegsmann, Charlotte Janßen, Rolf Rüdinger Meliß, Thomas Muley, Ulrich Sack, Georg Steinbuss and Mark Kriegsmann

MARC

LEADER 00000caa a2200000 c 4500
001 1827904100
003 DE-627
005 20250204115038.0
007 cr uuu---uuuuu
008 221219s2022 xx |||||o 00| ||eng c
024 7 |a 10.3389/fonc.2022.1022967  |2 doi 
035 |a (DE-627)1827904100 
035 |a (DE-599)KXP1827904100 
035 |a (OCoLC)1360436457 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kriegsmann, Katharina  |d 1986-  |e VerfasserIn  |0 (DE-588)1049422449  |0 (DE-627)781924006  |0 (DE-576)40339774X  |4 aut 
245 1 0 |a Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections  |c Katharina Kriegsmann, Frithjof Lobers, Christiane Zgorzelski, Jörg Kriegsmann, Charlotte Janßen, Rolf Rüdinger Meliß, Thomas Muley, Ulrich Sack, Georg Steinbuss and Mark Kriegsmann 
264 1 |c 22 November 2022 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.12.2022 
500 |a Der zweite Vorname des sechsten Autors ist fälschlich als Rüdinger statt Rüdiger geschrieben 
520 |a Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to complement and improve routine diagnostics, but publicly available curated and annotated data and usable models trained to distinguish common skin tumors are rare and often lack heterogeneous non-tumor categories. A total of 16 classes from 386 cases were manually annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395 px) image tiles were extracted and split into a training, validation and test set. An EfficientV2 neuronal network was trained and optimized to classify image categories. Cross entropy loss, balanced accuracy and Matthews correlation coefficient were used for model evaluation. Image and patient data were assessed with confusion matrices. Application of the model to an external set of whole slides facilitated localization of melanoma and non-tumor tissue. Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor tissue structures was possible, and a high diagnostic accuracy was achieved in the validation (98%) and test (97%) set. In summary, we provide a curated dataset including the most common neoplasms of the skin and various anatomical compartments to enable researchers to train, validate and improve deep learning models. Automated classification of skin tumors by deep learning techniques is possible with high accuracy, facilitates tumor localization and has the potential to support and improve routine diagnostics. 
700 1 |a Lobers, Frithjof  |d 1998-  |e VerfasserIn  |0 (DE-588)135525163X  |0 (DE-627)1916316182  |4 aut 
700 1 |a Zgorzelski, Christiane  |e VerfasserIn  |0 (DE-588)1167972317  |0 (DE-627)1031669019  |0 (DE-576)511377622  |4 aut 
700 1 |a Kriegsmann, Jörg  |d 1961-  |e VerfasserIn  |0 (DE-588)120274159  |0 (DE-627)696522713  |0 (DE-576)292131895  |4 aut 
700 1 |a Janßen, Charlotte  |e VerfasserIn  |0 (DE-588)1279617055  |0 (DE-627)183275118X  |4 aut 
700 1 |a Meliß, Rolf Rüdiger  |d 1961-  |e VerfasserIn  |0 (DE-588)120477858  |0 (DE-627)696710218  |0 (DE-576)292241038  |4 aut 
700 1 |a Muley, Thomas  |e VerfasserIn  |0 (DE-588)1056885432  |0 (DE-627)794179169  |0 (DE-576)16759284X  |4 aut 
700 1 |a Sack, Ulrich  |d 1961-  |e VerfasserIn  |0 (DE-588)112981369X  |0 (DE-627)884410986  |0 (DE-576)486573656  |4 aut 
700 1 |a Steinbuß, Georg  |e VerfasserIn  |0 (DE-588)1213253330  |0 (DE-627)1703730534  |4 aut 
700 1 |a Kriegsmann, Mark  |d 1987-  |e VerfasserIn  |0 (DE-588)103740324X  |0 (DE-627)755668782  |0 (DE-576)39141870X  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in oncology  |d Lausanne : Frontiers Media, 2011  |g 12(2022) vom: Nov., Artikel-ID 1022967, Seite 1-11  |h Online-Ressource  |w (DE-627)684965518  |w (DE-600)2649216-7  |w (DE-576)35841184X  |x 2234-943X  |7 nnas  |a Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections 
773 1 8 |g volume:12  |g year:2022  |g month:11  |g elocationid:1022967  |g pages:1-11  |g extent:11  |a Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections 
787 0 8 |i Errata  |a Kriegsmann, Katharina, 1986 -   |t Corrigendum: Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections  |d 2023  |w (DE-627)1851794379 
787 0 8 |i Forschungsdaten  |a Kriegsmann, Katharina, 1986 -   |t Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections [data]  |d Heidelberg : Universität, 2023  |h 1 Online-Ressource (3 Files)  |w (DE-627)183872821X 
856 4 0 |u https://doi.org/10.3389/fonc.2022.1022967  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.frontiersin.org/articles/10.3389/fonc.2022.1022967  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20221219 
993 |a Article 
994 |a 2022 
998 |g 103740324X  |a Kriegsmann, Mark  |m 103740324X:Kriegsmann, Mark  |d 50000  |e 50000PK103740324X  |k 0/50000/  |p 10  |y j 
998 |g 1213253330  |a Steinbuß, Georg  |m 1213253330:Steinbuß, Georg  |d 910000  |d 910100  |e 910000PS1213253330  |e 910100PS1213253330  |k 0/910000/  |k 1/910000/910100/  |p 9 
998 |g 1056885432  |a Muley, Thomas  |m 1056885432:Muley, Thomas  |d 910000  |d 950000  |d 950900  |e 910000PM1056885432  |e 950000PM1056885432  |e 950900PM1056885432  |k 0/910000/  |k 1/910000/950000/  |k 2/910000/950000/950900/  |p 7 
998 |g 1049422449  |a Kriegsmann, Katharina  |m 1049422449:Kriegsmann, Katharina  |d 910000  |d 910100  |e 910000PK1049422449  |e 910100PK1049422449  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1827904100  |e 4235068024 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"22 November 2022","dateIssuedKey":"2022"}],"note":["Gesehen am 19.12.2022","Der zweite Vorname des sechsten Autors ist fälschlich als Rüdinger statt Rüdiger geschrieben"],"title":[{"title_sort":"Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections","title":"Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"family":"Kriegsmann","display":"Kriegsmann, Katharina","given":"Katharina","role":"aut"},{"family":"Lobers","display":"Lobers, Frithjof","role":"aut","given":"Frithjof"},{"family":"Zgorzelski","display":"Zgorzelski, Christiane","given":"Christiane","role":"aut"},{"given":"Jörg","role":"aut","display":"Kriegsmann, Jörg","family":"Kriegsmann"},{"given":"Charlotte","role":"aut","family":"Janßen","display":"Janßen, Charlotte"},{"role":"aut","given":"Rolf Rüdiger","display":"Meliß, Rolf Rüdiger","family":"Meliß"},{"family":"Muley","display":"Muley, Thomas","given":"Thomas","role":"aut"},{"given":"Ulrich","role":"aut","display":"Sack, Ulrich","family":"Sack"},{"family":"Steinbuß","display":"Steinbuß, Georg","role":"aut","given":"Georg"},{"family":"Kriegsmann","display":"Kriegsmann, Mark","role":"aut","given":"Mark"}],"relHost":[{"disp":"Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sectionsFrontiers in oncology","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 07.11.13"],"origin":[{"publisherPlace":"Lausanne","dateIssuedDisp":"2011-","publisher":"Frontiers Media","dateIssuedKey":"2011"}],"title":[{"title_sort":"Frontiers in oncology","title":"Frontiers in oncology"}],"part":{"year":"2022","pages":"1-11","text":"12(2022) vom: Nov., Artikel-ID 1022967, Seite 1-11","extent":"11","volume":"12"},"pubHistory":["2011 -"],"recId":"684965518","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2234-943X"],"eki":["684965518"],"zdb":["2649216-7"]}}],"id":{"doi":["10.3389/fonc.2022.1022967"],"eki":["1827904100"]},"name":{"displayForm":["Katharina Kriegsmann, Frithjof Lobers, Christiane Zgorzelski, Jörg Kriegsmann, Charlotte Janßen, Rolf Rüdinger Meliß, Thomas Muley, Ulrich Sack, Georg Steinbuss and Mark Kriegsmann"]},"physDesc":[{"extent":"11 S."}],"recId":"1827904100"} 
SRT |a KRIEGSMANNDEEPLEARNI2220