Toward the continuum limit of a (1+1)D quantum link Schwinger model
The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for U(1) gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-S operators, known as quantum link models. For quantum elec...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article (Journal) Editorial |
| Language: | English |
| Published: |
3 November 2022
|
| In: |
Physical review
Year: 2022, Volume: 106, Issue: 9, Pages: 1-8 |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/PhysRevD.106.L091502 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.106.L091502 Verlag, lizenzpflichtig, Volltext: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.L091502 |
| Author Notes: | Torsten V. Zache, Maarten Van Damme, Jad C. Halimeh, Philipp Hauke, and Debasish Banerjee |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1831285150 | ||
| 003 | DE-627 | ||
| 005 | 20231108094616.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230117s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevD.106.L091502 |2 doi | |
| 035 | |a (DE-627)1831285150 | ||
| 035 | |a (DE-599)KXP1831285150 | ||
| 035 | |a (OCoLC)1389536140 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Zache, Torsten Victor |d 1992- |e VerfasserIn |0 (DE-588)1140030485 |0 (DE-627)898146852 |0 (DE-576)493596550 |4 aut | |
| 245 | 1 | 0 | |a Toward the continuum limit of a (1+1)D quantum link Schwinger model |c Torsten V. Zache, Maarten Van Damme, Jad C. Halimeh, Philipp Hauke, and Debasish Banerjee |
| 246 | 3 | 0 | |a (1+1) D |
| 264 | 1 | |c 3 November 2022 | |
| 300 | |b Illustrationen | ||
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 08.11.2023 | ||
| 520 | |a The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for U(1) gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-S operators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths S, large volume N, and vanishing lattice spacing a. By exactly solving Gauss’s law for arbitrary S, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle Θ=π. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models. | ||
| 700 | 1 | |a Damme, Maarten van |e VerfasserIn |0 (DE-588)1308103433 |0 (DE-627)1868876691 |4 aut | |
| 700 | 1 | |a Halimeh, Jad C. |e VerfasserIn |0 (DE-588)1215514727 |0 (DE-627)1726697878 |4 aut | |
| 700 | 1 | |a Hauke, Philipp |e VerfasserIn |0 (DE-588)1153847140 |0 (DE-627)1015396828 |0 (DE-576)50059760X |4 aut | |
| 700 | 1 | |a Banerjee, Debasish |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Ridge, NY : American Physical Society, 2016 |g 106(2022), 9, Artikel-ID L091502, Seite 1-8 |h Online-Ressource |w (DE-627)846313510 |w (DE-600)2844732-3 |w (DE-576)454495811 |x 2470-0029 |7 nnas |a Toward the continuum limit of a (1+1)D quantum link Schwinger model |
| 773 | 1 | 8 | |g volume:106 |g year:2022 |g number:9 |g elocationid:L091502 |g pages:1-8 |g extent:8 |a Toward the continuum limit of a (1+1)D quantum link Schwinger model |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevD.106.L091502 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.L091502 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230117 | ||
| 993 | |a Editorial | ||
| 994 | |a 2022 | ||
| 998 | |g 1153847140 |a Hauke, Philipp |m 1153847140:Hauke, Philipp |p 4 | ||
| 998 | |g 1140030485 |a Zache, Torsten Victor |m 1140030485:Zache, Torsten Victor |p 1 |x j | ||
| 999 | |a KXP-PPN1831285150 |e 4249102882 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"noteIll":"Illustrationen","extent":"8 S."}],"language":["eng"],"id":{"doi":["10.1103/PhysRevD.106.L091502"],"eki":["1831285150"]},"recId":"1831285150","title":[{"title_sort":"Toward the continuum limit of a (1+1)D quantum link Schwinger model","title":"Toward the continuum limit of a (1+1)D quantum link Schwinger model"}],"person":[{"role":"aut","given":"Torsten Victor","roleDisplay":"VerfasserIn","display":"Zache, Torsten Victor","family":"Zache"},{"role":"aut","given":"Maarten van","roleDisplay":"VerfasserIn","family":"Damme","display":"Damme, Maarten van"},{"roleDisplay":"VerfasserIn","display":"Halimeh, Jad C.","family":"Halimeh","role":"aut","given":"Jad C."},{"display":"Hauke, Philipp","family":"Hauke","roleDisplay":"VerfasserIn","role":"aut","given":"Philipp"},{"roleDisplay":"VerfasserIn","display":"Banerjee, Debasish","family":"Banerjee","given":"Debasish","role":"aut"}],"note":["Gesehen am 08.11.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"3 November 2022"}],"relHost":[{"disp":"Toward the continuum limit of a (1+1)D quantum link Schwinger modelPhysical review","pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"origin":[{"publisher":"American Physical Society","dateIssuedDisp":"2016-","publisherPlace":"Ridge, NY","dateIssuedKey":"2016"}],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Physical Society","role":"isb"}],"part":{"text":"106(2022), 9, Artikel-ID L091502, Seite 1-8","issue":"9","extent":"8","year":"2022","pages":"1-8","volume":"106"},"name":{"displayForm":["published by American Physical Society"]},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"id":{"eki":["846313510"],"zdb":["2844732-3"],"issn":["2470-0029"]},"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"recId":"846313510","title":[{"title_sort":"Physical review","title":"Physical review"}],"note":["Gesehen am 14.03.2023"],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"name":{"displayForm":["Torsten V. Zache, Maarten Van Damme, Jad C. Halimeh, Philipp Hauke, and Debasish Banerjee"]}} | ||
| SRT | |a ZACHETORSTTOWARDTHEC3202 | ||