Variational Monte Carlo approach to partial differential equations with neural networks

The accurate numerical solution of partial differential equations (PDEs) is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving PDEs gov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reh, Moritz (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal) Editorial
Sprache:Englisch
Veröffentlicht: 1 December 2022
In: Machine learning: science and technology
Year: 2022, Jahrgang: 3, Heft: 4, Pages: 1-7
ISSN:2632-2153
DOI:10.1088/2632-2153/aca317
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1088/2632-2153/aca317
Verlag, kostenfrei, Volltext: https://iopscience.iop.org/article/10.1088/2632-2153/aca317
Volltext
Verfasserangaben:Moritz Reh and Martin Gärttner

MARC

LEADER 00000caa a2200000 c 4500
001 1831329972
003 DE-627
005 20231108100300.0
007 cr uuu---uuuuu
008 230118s2022 xx |||||o 00| ||eng c
024 7 |a 10.1088/2632-2153/aca317  |2 doi 
035 |a (DE-627)1831329972 
035 |a (DE-599)KXP1831329972 
035 |a (OCoLC)1389536265 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Reh, Moritz  |d 1995-  |e VerfasserIn  |0 (DE-588)1247844358  |0 (DE-627)1782431616  |4 aut 
245 1 0 |a Variational Monte Carlo approach to partial differential equations with neural networks  |c Moritz Reh and Martin Gärttner 
264 1 |c 1 December 2022 
300 |b Diagramme 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.11.2023 
520 |a The accurate numerical solution of partial differential equations (PDEs) is a central task in numerical analysis allowing to model a wide range of natural phenomena by employing specialized solvers depending on the scenario of application. Here, we develop a variational approach for solving PDEs governing the evolution of high dimensional probability distributions. Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters, which are adapted dynamically during the evolution to optimally reflect the dynamics of the density. In contrast to previous works, this dynamical adaptation of the parameters is carried out using an explicit prescription avoiding iterative gradient descent. For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions for tasks that are challenging for traditional computational approaches. 
700 1 |a Gärttner, Martin  |d 1985-  |e VerfasserIn  |0 (DE-588)1047469529  |0 (DE-627)778426076  |0 (DE-576)401083527  |4 aut 
773 0 8 |i Enthalten in  |t Machine learning: science and technology  |d Bristol : IOP Publishing, 2020  |g 3(2022), 4, Artikel-ID 04LT02, Seite 1-7  |h Online-Ressource  |w (DE-627)1694891836  |w (DE-600)3017004-7  |x 2632-2153  |7 nnas  |a Variational Monte Carlo approach to partial differential equations with neural networks 
773 1 8 |g volume:3  |g year:2022  |g number:4  |g elocationid:04LT02  |g pages:1-7  |g extent:7  |a Variational Monte Carlo approach to partial differential equations with neural networks 
856 4 0 |u https://doi.org/10.1088/2632-2153/aca317  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://iopscience.iop.org/article/10.1088/2632-2153/aca317  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230118 
993 |a Editorial 
994 |a 2022 
998 |g 1047469529  |a Gärttner, Martin  |m 1047469529:Gärttner, Martin  |d 130000  |d 130000  |d 130200  |d 700000  |d 728500  |e 130000PG1047469529  |e 130000PG1047469529  |e 130200PG1047469529  |e 700000PG1047469529  |e 728500PG1047469529  |k 0/130000/  |k 0/130000/  |k 1/130000/130200/  |k 0/700000/  |k 1/700000/728500/  |p 2  |y j 
998 |g 1247844358  |a Reh, Moritz  |m 1247844358:Reh, Moritz  |d 130000  |d 130700  |d 700000  |d 728500  |e 130000PR1247844358  |e 130700PR1247844358  |e 700000PR1247844358  |e 728500PR1247844358  |k 0/130000/  |k 1/130000/130700/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1831329972  |e 4249387127 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"1 December 2022"}],"name":{"displayForm":["Moritz Reh and Martin Gärttner"]},"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"volume":"3","pages":"1-7","year":"2022","text":"3(2022), 4, Artikel-ID 04LT02, Seite 1-7","extent":"7","issue":"4"},"note":["Gesehen am 17. April 2020"],"title":[{"title":"Machine learning: science and technology","title_sort":"Machine learning: science and technology"}],"origin":[{"publisher":"IOP Publishing","dateIssuedDisp":"2020-","publisherPlace":"Bristol","dateIssuedKey":"2020"}],"recId":"1694891836","pubHistory":["Volume 1, number 1 (1 March 2020)-"],"disp":"Variational Monte Carlo approach to partial differential equations with neural networksMachine learning: science and technology","id":{"doi":["10.1088/2632-2153"],"issn":["2632-2153"],"zdb":["3017004-7"],"eki":["1694891836"]},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}]}],"recId":"1831329972","language":["eng"],"id":{"doi":["10.1088/2632-2153/aca317"],"eki":["1831329972"]},"physDesc":[{"noteIll":"Diagramme","extent":"7 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 08.11.2023"],"title":[{"title":"Variational Monte Carlo approach to partial differential equations with neural networks","title_sort":"Variational Monte Carlo approach to partial differential equations with neural networks"}],"person":[{"role":"aut","given":"Moritz","roleDisplay":"VerfasserIn","display":"Reh, Moritz","family":"Reh"},{"role":"aut","given":"Martin","roleDisplay":"VerfasserIn","display":"Gärttner, Martin","family":"Gärttner"}]} 
SRT |a REHMORITZGVARIATIONA1202