Hierarchical optofluidic microreactor for water purification using an array of TiO2 nanostructures

Clean water for human consumption is, in many places, a scarce resource, and efficient schemes to purify water are in great demand. Here, we describe a method to dramatically increase the efficiency of a photocatalytic water purification microreactor. Our hierarchical optofluidic microreactor combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Hyejeong (VerfasserIn) , Kwon, Hyunah (VerfasserIn) , Song, Ryungeun (VerfasserIn) , Shin, Seonghun (VerfasserIn) , Ham, So-Young (VerfasserIn) , Park, Hee-Deung (VerfasserIn) , Lee, Jinkee (VerfasserIn) , Fischer, Peer (VerfasserIn) , Bodenschatz, Eberhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 November 2022
In: Clean water
Year: 2022, Jahrgang: 5, Pages: 1-10
ISSN:2059-7037
DOI:10.1038/s41545-022-00204-y
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41545-022-00204-y
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41545-022-00204-y
Volltext
Verfasserangaben:Hyejeong Kim, Hyunah Kwon, Ryungeun Song, Seonghun Shin, So-Young Ham, Hee-Deung Park, Jinkee Lee, Peer Fischer and Eberhard Bodenschatz
Beschreibung
Zusammenfassung:Clean water for human consumption is, in many places, a scarce resource, and efficient schemes to purify water are in great demand. Here, we describe a method to dramatically increase the efficiency of a photocatalytic water purification microreactor. Our hierarchical optofluidic microreactor combines the advantages of a nanostructured photocatalyst with light harvesting by base substrates, together with a herringbone micromixer for the enhanced transport of reactants. The herringbone micromixer further improves the reaction efficiency of the nanostructured photocatalyst by generating counter-rotating vortices along the flow direction. In addition, the use of metal-based substrates underneath the nanostructured catalyst increases the purification capacity by improving the light-harvesting efficiency. The photocatalyst is grown from TiO2 as a nanohelix film, which exhibits a large surface-to-volume ratio and a reactive microstructure. We show that the hierarchical structuring with micro- to nanoscale features results in a device with markedly increased photocatalytic activity as compared with a solid unstructured catalyst surface. This is evidenced by the successful degradation of persistent aqueous contaminants, sulfamethoxazole, and polystyrene microplastics. The design can potentially be implemented with solar photocatalysts in flow-through water purification systems.
Beschreibung:Im Titel ist die Zahl 2 tiefgestellt
Gesehen am 18.01.2023
Beschreibung:Online Resource
ISSN:2059-7037
DOI:10.1038/s41545-022-00204-y