Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport

Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve...

Full description

Saved in:
Bibliographic Details
Main Authors: Stammer, Pia (Author) , Burigo, Lucas Norberto (Author) , Jäkel, Oliver (Author) , Frank, Martin (Author) , Wahl, Niklas (Author)
Format: Article (Journal)
Language:English
Published: 26 October 2022
In: Journal of computational physics
Year: 2023, Volume: 473, Pages: 1-22
ISSN:1090-2716
DOI:10.1016/j.jcp.2022.111725
Online Access:Verlag, Volltext: https://doi.org/10.1016/j.jcp.2022.111725
Verlag, Volltext: https://www.sciencedirect.com/science/article/pii/S0021999122007884
Get full text
Author Notes:Pia Stammer, Lucas Burigo, Oliver Jäkel, Martin Frank, Niklas Wahl

MARC

LEADER 00000caa a2200000 c 4500
001 183142150X
003 DE-627
005 20230706221821.0
007 cr uuu---uuuuu
008 230118s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2022.111725  |2 doi 
035 |a (DE-627)183142150X 
035 |a (DE-599)KXP183142150X 
035 |a (OCoLC)1389533360 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Stammer, Pia  |e VerfasserIn  |0 (DE-588)1246217287  |0 (DE-627)1778229123  |4 aut 
245 1 0 |a Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport  |c Pia Stammer, Lucas Burigo, Oliver Jäkel, Martin Frank, Niklas Wahl 
264 1 |c 26 October 2022 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.01.2023 
520 |a Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve transport problems especially for applications which require high accuracy. In these cases, common non-intrusive solution strategies that involve repeated simulations of the problem at different points in the parameter space quickly become infeasible due to their long run-times. Intrusive methods however limit the usability in combination with proprietary simulation engines. In [61], we demonstrated the application of a new non-intrusive uncertainty quantification approach for Monte Carlo simulations in proton dose calculations with normally distributed errors on realistic patient data. In this paper, we introduce a generalized formulation and focus on a more in-depth theoretical analysis of this method concerning bias, error and convergence of the estimates. The multivariate input model of the proposed approach further supports almost arbitrary error correlation models. We demonstrate how this framework can be used to model and efficiently quantify complex auto-correlated and time-dependent errors. 
650 4 |a Boltzmann equation 
650 4 |a Error modeling 
650 4 |a Importance sampling 
650 4 |a Monte Carlo 
650 4 |a Radiative transport 
650 4 |a Uncertainty quantification 
700 1 |a Burigo, Lucas Norberto  |d 1985-  |e VerfasserIn  |0 (DE-588)1053988648  |0 (DE-627)790906627  |0 (DE-576)409946028  |4 aut 
700 1 |a Jäkel, Oliver  |d 1964-  |e VerfasserIn  |0 (DE-588)1050056302  |0 (DE-627)783260709  |0 (DE-576)404358705  |4 aut 
700 1 |a Frank, Martin  |e VerfasserIn  |4 aut 
700 1 |a Wahl, Niklas  |d 1988-  |e VerfasserIn  |0 (DE-588)107775177X  |0 (DE-627)837441838  |0 (DE-576)445344539  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d Amsterdam : Elsevier, 1961  |g 473(2023), Artikel-ID 111725, Seite 1-22  |h Online-Ressource  |w (DE-627)266892485  |w (DE-600)1469164-4  |w (DE-576)104193824  |x 1090-2716  |7 nnas  |a Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport 
773 1 8 |g volume:473  |g year:2023  |g elocationid:111725  |g pages:1-22  |g extent:22  |a Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport 
856 4 0 |u https://doi.org/10.1016/j.jcp.2022.111725  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0021999122007884  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20230118 
993 |a Article 
994 |a 2022 
998 |g 107775177X  |a Wahl, Niklas  |m 107775177X:Wahl, Niklas  |d 50000  |e 50000PW107775177X  |k 0/50000/  |p 5  |y j 
998 |g 1050056302  |a Jäkel, Oliver  |m 1050056302:Jäkel, Oliver  |d 50000  |e 50000PJ1050056302  |k 0/50000/  |p 3 
998 |g 1053988648  |a Burigo, Lucas Norberto  |m 1053988648:Burigo, Lucas Norberto  |d 50000  |e 50000PB1053988648  |k 0/50000/  |p 2 
999 |a KXP-PPN183142150X  |e 4249538192 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"183142150X","physDesc":[{"extent":"22 S."}],"title":[{"title_sort":"Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport","title":"Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport"}],"note":["Gesehen am 18.01.2023"],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"display":"Stammer, Pia","role":"aut","given":"Pia","family":"Stammer"},{"display":"Burigo, Lucas Norberto","role":"aut","given":"Lucas Norberto","family":"Burigo"},{"display":"Jäkel, Oliver","family":"Jäkel","role":"aut","given":"Oliver"},{"display":"Frank, Martin","family":"Frank","given":"Martin","role":"aut"},{"family":"Wahl","given":"Niklas","role":"aut","display":"Wahl, Niklas"}],"relHost":[{"id":{"zdb":["1469164-4"],"eki":["266892485"],"issn":["1090-2716"]},"title":[{"title_sort":"Journal of computational physics","title":"Journal of computational physics"}],"part":{"extent":"22","text":"473(2023), Artikel-ID 111725, Seite 1-22","volume":"473","year":"2023","pages":"1-22"},"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 04.06.2020"],"origin":[{"publisherPlace":"Amsterdam ; Orlando, Fla.","dateIssuedKey":"1961","dateIssuedDisp":"1961-","publisher":"Elsevier ; Academic Press"}],"pubHistory":["1.1966 - 231.2012; Vol. 232.2013 -"],"disp":"Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transportJournal of computational physics","recId":"266892485","physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2023","dateIssuedDisp":"26 October 2022"}],"id":{"eki":["183142150X"],"doi":["10.1016/j.jcp.2022.111725"]},"name":{"displayForm":["Pia Stammer, Lucas Burigo, Oliver Jäkel, Martin Frank, Niklas Wahl"]}} 
SRT |a STAMMERPIAMULTIVARIA2620