Bond dissociation energies of X-H bonds in proteins

Knowledge of reliable X-H bond dissociation energies (X = C, N, O, S) for amino acids in proteins is key for studying the radical chemistry of proteins. X-H bond dissociation energies of model dipeptides were computed using the isodesmic reaction method at the BMK/6-31+G(2df,p) and G4(MP2)-6X levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Treyde, Wojtek (VerfasserIn) , Riedmiller, Kai (VerfasserIn) , Gräter, Frauke (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 01 Dec 2022
In: RSC Advances
Year: 2022, Jahrgang: 12, Heft: 53, Pages: 34557-34564
ISSN:2046-2069
DOI:10.1039/D2RA04002F
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1039/D2RA04002F
Verlag, lizenzpflichtig, Volltext: https://pubs.rsc.org/en/content/articlelanding/2022/ra/d2ra04002f
Volltext
Verfasserangaben:Wojtek Treyde, Kai Riedmiller and Frauke Gräter
Beschreibung
Zusammenfassung:Knowledge of reliable X-H bond dissociation energies (X = C, N, O, S) for amino acids in proteins is key for studying the radical chemistry of proteins. X-H bond dissociation energies of model dipeptides were computed using the isodesmic reaction method at the BMK/6-31+G(2df,p) and G4(MP2)-6X levels of theory. The density functional theory values agree well with the composite-level calculations. By this high level of theory, combined with a careful choice of reference compounds and peptide model systems, our work provides a highly valuable data set of bond dissociation energies with unprecedented accuracy and comprehensiveness. It will likely prove useful to predict protein biochemistry involving radicals, e.g., by machine learning.
Beschreibung:Gesehen am 31.01.2023
Beschreibung:Online Resource
ISSN:2046-2069
DOI:10.1039/D2RA04002F