Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI

Artificial intelligence (AI) has shown potential for facilitating the detection and classification of tumors. In patients with non-small cell lung cancer, distinguishing between the most common subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SqCC), is crucial for the development of an ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Janßen, Charlotte (VerfasserIn) , Boskamp, Tobias (VerfasserIn) , Le’Clerc Arrastia, Jean (VerfasserIn) , Otero Baguer, Daniel (VerfasserIn) , Hauberg-Lotte, Lena (VerfasserIn) , Kriegsmann, Mark (VerfasserIn) , Kriegsmann, Katharina (VerfasserIn) , Steinbuß, Georg (VerfasserIn) , Casadonte, Rita (VerfasserIn) , Kriegsmann, Jörg (VerfasserIn) , Maaß, Peter (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 December 2022
In: Cancers
Year: 2022, Jahrgang: 14, Heft: 24, Pages: 1-21
ISSN:2072-6694
DOI:10.3390/cancers14246181
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/cancers14246181
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-6694/14/24/6181
Volltext
Verfasserangaben:Charlotte Janßen, Tobias Boskamp, Jean Le’Clerc Arrastia, Daniel Otero Baguer, Lena Hauberg-Lotte, Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuß, Rita Casadonte, Jörg Kriegsmann and Peter Maaß

MARC

LEADER 00000caa a2200000 c 4500
001 1832750698
003 DE-627
005 20230706235510.0
007 cr uuu---uuuuu
008 230131s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/cancers14246181  |2 doi 
035 |a (DE-627)1832750698 
035 |a (DE-599)KXP1832750698 
035 |a (OCoLC)1389536001 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Janßen, Charlotte  |e VerfasserIn  |0 (DE-588)1279617055  |0 (DE-627)183275118X  |4 aut 
245 1 0 |a Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI  |c Charlotte Janßen, Tobias Boskamp, Jean Le’Clerc Arrastia, Daniel Otero Baguer, Lena Hauberg-Lotte, Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuß, Rita Casadonte, Jörg Kriegsmann and Peter Maaß 
264 1 |c 14 December 2022 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 31.01.2023 
520 |a Artificial intelligence (AI) has shown potential for facilitating the detection and classification of tumors. In patients with non-small cell lung cancer, distinguishing between the most common subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SqCC), is crucial for the development of an effective treatment plan. This task, however, may still present challenges in clinical routine. We propose a two-modality, AI-based classification algorithm to detect and subtype tumor areas, which combines information from matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) data and digital microscopy whole slide images (WSIs) of lung tissue sections. The method consists of first detecting areas with high tumor cell content by performing a segmentation of the hematoxylin and eosin-stained (H&E-stained) WSIs, and subsequently classifying the tumor areas based on the corresponding MALDI MSI data. We trained the algorithm on six tissue microarrays (TMAs) with tumor samples from N = 232 patients and used 14 additional whole sections for validation and model selection. Classification accuracy was evaluated on a test dataset with another 16 whole sections. The algorithm accurately detected and classified tumor areas, yielding a test accuracy of 94.7% on spectrum level, and correctly classified 15 of 16 test sections. When an additional quality control criterion was introduced, a 100% test accuracy was achieved on sections that passed the quality control (14 of 16). The presented method provides a step further towards the inclusion of AI and MALDI MSI data into clinical routine and has the potential to reduce the pathologist’s work load. A careful analysis of the results revealed specific challenges to be considered when training neural networks on data from lung cancer tissue. 
650 4 |a artificial intelligence 
650 4 |a deep learning 
650 4 |a lung cancer 
650 4 |a mass spectrometry imaging 
650 4 |a non-small cell lung cancer 
650 4 |a tumor detection 
650 4 |a tumor segmentation 
650 4 |a whole slide images 
700 1 |a Boskamp, Tobias  |e VerfasserIn  |4 aut 
700 1 |a Le’Clerc Arrastia, Jean  |e VerfasserIn  |4 aut 
700 1 |a Otero Baguer, Daniel  |e VerfasserIn  |4 aut 
700 1 |a Hauberg-Lotte, Lena  |e VerfasserIn  |4 aut 
700 1 |a Kriegsmann, Mark  |d 1987-  |e VerfasserIn  |0 (DE-588)103740324X  |0 (DE-627)755668782  |0 (DE-576)39141870X  |4 aut 
700 1 |a Kriegsmann, Katharina  |d 1986-  |e VerfasserIn  |0 (DE-588)1049422449  |0 (DE-627)781924006  |0 (DE-576)40339774X  |4 aut 
700 1 |a Steinbuß, Georg  |e VerfasserIn  |0 (DE-588)1213253330  |0 (DE-627)1703730534  |4 aut 
700 1 |a Casadonte, Rita  |e VerfasserIn  |4 aut 
700 1 |a Kriegsmann, Jörg  |e VerfasserIn  |4 aut 
700 1 |a Maaß, Peter  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Cancers  |d Basel : MDPI, 2009  |g 14(2022), 24 vom: Dez., Artikel-ID 6181, Seite 1-21  |h Online-Ressource  |w (DE-627)614095670  |w (DE-600)2527080-1  |w (DE-576)313958548  |x 2072-6694  |7 nnas  |a Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI 
773 1 8 |g volume:14  |g year:2022  |g number:24  |g month:12  |g elocationid:6181  |g pages:1-21  |g extent:21  |a Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI 
856 4 0 |u https://doi.org/10.3390/cancers14246181  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-6694/14/24/6181  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230131 
993 |a Article 
994 |a 2022 
998 |g 1213253330  |a Steinbuß, Georg  |m 1213253330:Steinbuß, Georg  |d 910000  |d 910100  |e 910000PS1213253330  |e 910100PS1213253330  |k 0/910000/  |k 1/910000/910100/  |p 8 
998 |g 1049422449  |a Kriegsmann, Katharina  |m 1049422449:Kriegsmann, Katharina  |d 910000  |d 910100  |e 910000PK1049422449  |e 910100PK1049422449  |k 0/910000/  |k 1/910000/910100/  |p 7 
998 |g 103740324X  |a Kriegsmann, Mark  |m 103740324X:Kriegsmann, Mark  |d 50000  |e 50000PK103740324X  |k 0/50000/  |p 6 
999 |a KXP-PPN1832750698  |e 425551643X 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","given":"Charlotte","family":"Janßen","display":"Janßen, Charlotte"},{"role":"aut","given":"Tobias","family":"Boskamp","display":"Boskamp, Tobias"},{"role":"aut","given":"Jean","family":"Le’Clerc Arrastia","display":"Le’Clerc Arrastia, Jean"},{"given":"Daniel","role":"aut","display":"Otero Baguer, Daniel","family":"Otero Baguer"},{"role":"aut","given":"Lena","display":"Hauberg-Lotte, Lena","family":"Hauberg-Lotte"},{"given":"Mark","role":"aut","family":"Kriegsmann","display":"Kriegsmann, Mark"},{"family":"Kriegsmann","display":"Kriegsmann, Katharina","role":"aut","given":"Katharina"},{"role":"aut","given":"Georg","family":"Steinbuß","display":"Steinbuß, Georg"},{"family":"Casadonte","display":"Casadonte, Rita","given":"Rita","role":"aut"},{"display":"Kriegsmann, Jörg","family":"Kriegsmann","role":"aut","given":"Jörg"},{"given":"Peter","role":"aut","family":"Maaß","display":"Maaß, Peter"}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"14 December 2022"}],"note":["Gesehen am 31.01.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI","title":"Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSI"}],"language":["eng"],"name":{"displayForm":["Charlotte Janßen, Tobias Boskamp, Jean Le’Clerc Arrastia, Daniel Otero Baguer, Lena Hauberg-Lotte, Mark Kriegsmann, Katharina Kriegsmann, Georg Steinbuß, Rita Casadonte, Jörg Kriegsmann and Peter Maaß"]},"physDesc":[{"extent":"21 S."}],"recId":"1832750698","relHost":[{"id":{"issn":["2072-6694"],"eki":["614095670"],"zdb":["2527080-1"]},"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.2009 -"],"recId":"614095670","note":["Gesehen am 27.05.2020"],"origin":[{"publisherPlace":"Basel","dateIssuedDisp":"2009-","publisher":"MDPI","dateIssuedKey":"2009"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Cancers","title":"Cancers"}],"part":{"volume":"14","extent":"21","pages":"1-21","text":"14(2022), 24 vom: Dez., Artikel-ID 6181, Seite 1-21","year":"2022","issue":"24"},"language":["eng"],"disp":"Multimodal lung cancer subtyping using deep learning neural networks on whole slide tissue images and MALDI MSICancers"}],"id":{"doi":["10.3390/cancers14246181"],"eki":["1832750698"]}} 
SRT |a JANSSENCHAMULTIMODAL1420