Pair localization in dipolar systems with tunable positional disorder

Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Braemer, Adrian (VerfasserIn) , Franz, Titus (VerfasserIn) , Weidemüller, Matthias (VerfasserIn) , Gärttner, Martin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 October 2022
In: Physical review
Year: 2022, Jahrgang: 106, Heft: 13, Pages: 1-10
ISSN:2469-9969
DOI:10.1103/PhysRevB.106.134212
Online-Zugang:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevB.106.134212
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.106.134212
Volltext
Verfasserangaben:Adrian Braemer, Titus Franz, Matthias Weidemüller, and Martin Gärttner
Beschreibung
Zusammenfassung:Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of random potentials, while many experimental realizations naturally feature disorder in the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered using the dipole blockade effect, we study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings, arising from power-law interactions between randomly positioned spins. Using established spectral and eigenstate properties and entanglement entropy, we show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities in the system, leading to an intuitive physical picture consistent with our numerical results.
Beschreibung:Gesehen am 31.01.2023
Beschreibung:Online Resource
ISSN:2469-9969
DOI:10.1103/PhysRevB.106.134212