Rapid artificial intelligence solutions in a pandemic: the COVID-19-20 lung CT lesion segmentation challenge
Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comp...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
[November 2022]
|
| In: |
Medical image analysis
Year: 2022, Volume: 82 |
| ISSN: | 1361-8423 |
| DOI: | 10.1016/j.media.2022.102605 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.media.2022.102605 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1361841522002353 |
| Author Notes: | Holger R. Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto, Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, Dong Yang, Ahmed Harouni, Nicola Rieke, Shishuai Hu, Fabian Isensee, Claire Tang, Qinji Yu, Jan Sölter, Tong Zheng, Vitali Liauchuk, Ziqi Zhou, Jan Hendrik Moltz, Bruno Oliveira, Yong Xia, Klaus H. Maier-Hein, Qikai Li, Andreas Husch, Luyang Zhang, Vassili Kovalev, Li Kang, Alessa Hering, João L. Vilaça, Mona Flores, Daguang Xu, Bradford Wood, Marius George Linguraru |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1832903729 | ||
| 003 | DE-627 | ||
| 005 | 20230706235033.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230201s2022 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.media.2022.102605 |2 doi | |
| 035 | |a (DE-627)1832903729 | ||
| 035 | |a (DE-599)KXP1832903729 | ||
| 035 | |a (OCoLC)1389535946 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Roth, Holger |e VerfasserIn |0 (DE-588)1279730617 |0 (DE-627)1832905713 |4 aut | |
| 245 | 1 | 0 | |a Rapid artificial intelligence solutions in a pandemic |b the COVID-19-20 lung CT lesion segmentation challenge |c Holger R. Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto, Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, Dong Yang, Ahmed Harouni, Nicola Rieke, Shishuai Hu, Fabian Isensee, Claire Tang, Qinji Yu, Jan Sölter, Tong Zheng, Vitali Liauchuk, Ziqi Zhou, Jan Hendrik Moltz, Bruno Oliveira, Yong Xia, Klaus H. Maier-Hein, Qikai Li, Andreas Husch, Luyang Zhang, Vassili Kovalev, Li Kang, Alessa Hering, João L. Vilaça, Mona Flores, Daguang Xu, Bradford Wood, Marius George Linguraru |
| 264 | 1 | |c [November 2022] | |
| 300 | |b Illustrationen, Diagramme | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 01.02.2023 | ||
| 520 | |a Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. | ||
| 650 | 4 | |a Challenge | |
| 650 | 4 | |a COVID-19 | |
| 650 | 4 | |a Medical image segmentation | |
| 700 | 1 | |a Isensee, Fabian |d 1990- |e VerfasserIn |0 (DE-588)1207568430 |0 (DE-627)1694044998 |4 aut | |
| 700 | 1 | |a Maier-Hein, Klaus H. |d 1980- |e VerfasserIn |0 (DE-588)1100551875 |0 (DE-627)85946461X |0 (DE-576)333771222 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Medical image analysis |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 82(2022) vom: Nov., Artikel-ID 102605 |h Online-Ressource |w (DE-627)306365081 |w (DE-600)1497450-2 |w (DE-576)091204941 |x 1361-8423 |7 nnas |a Rapid artificial intelligence solutions in a pandemic the COVID-19-20 lung CT lesion segmentation challenge |
| 773 | 1 | 8 | |g volume:82 |g year:2022 |g month:11 |g elocationid:102605 |a Rapid artificial intelligence solutions in a pandemic the COVID-19-20 lung CT lesion segmentation challenge |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.media.2022.102605 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S1361841522002353 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230201 | ||
| 993 | |a Article | ||
| 994 | |a 2022 | ||
| 998 | |g 1100551875 |a Maier-Hein, Klaus H. |m 1100551875:Maier-Hein, Klaus H. |d 910000 |d 911400 |e 910000PM1100551875 |e 911400PM1100551875 |k 0/910000/ |k 1/910000/911400/ |p 25 | ||
| 999 | |a KXP-PPN1832903729 |e 4260817078 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"306365081","id":{"issn":["1361-8423"],"eki":["306365081"],"zdb":["1497450-2"]},"origin":[{"publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1996","dateIssuedDisp":"1996-"}],"disp":"Rapid artificial intelligence solutions in a pandemic the COVID-19-20 lung CT lesion segmentation challengeMedical image analysis","language":["eng"],"titleAlt":[{"title":"Medical image analysis online"}],"pubHistory":["1.1996/97 -"],"note":["Gesehen am 16.05.23"],"part":{"year":"2022","text":"82(2022) vom: Nov., Artikel-ID 102605","volume":"82"},"title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title":"Rapid artificial intelligence solutions in a pandemic","subtitle":"the COVID-19-20 lung CT lesion segmentation challenge","title_sort":"Rapid artificial intelligence solutions in a pandemic"}],"physDesc":[{"noteIll":"Illustrationen, Diagramme"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1016/j.media.2022.102605"],"eki":["1832903729"]},"recId":"1832903729","name":{"displayForm":["Holger R. Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto, Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, Dong Yang, Ahmed Harouni, Nicola Rieke, Shishuai Hu, Fabian Isensee, Claire Tang, Qinji Yu, Jan Sölter, Tong Zheng, Vitali Liauchuk, Ziqi Zhou, Jan Hendrik Moltz, Bruno Oliveira, Yong Xia, Klaus H. Maier-Hein, Qikai Li, Andreas Husch, Luyang Zhang, Vassili Kovalev, Li Kang, Alessa Hering, João L. Vilaça, Mona Flores, Daguang Xu, Bradford Wood, Marius George Linguraru"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"[November 2022]"}],"language":["eng"],"note":["Gesehen am 01.02.2023"],"person":[{"display":"Roth, Holger","role":"aut","family":"Roth","given":"Holger"},{"given":"Fabian","display":"Isensee, Fabian","role":"aut","family":"Isensee"},{"given":"Klaus H.","display":"Maier-Hein, Klaus H.","role":"aut","family":"Maier-Hein"}]} | ||
| SRT | |a ROTHHOLGERRAPIDARTIF2022 | ||