Rapid artificial intelligence solutions in a pandemic: the COVID-19-20 lung CT lesion segmentation challenge

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comp...

Full description

Saved in:
Bibliographic Details
Main Authors: Roth, Holger (Author) , Isensee, Fabian (Author) , Maier-Hein, Klaus H. (Author)
Format: Article (Journal)
Language:English
Published: [November 2022]
In: Medical image analysis
Year: 2022, Volume: 82
ISSN:1361-8423
DOI:10.1016/j.media.2022.102605
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.media.2022.102605
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1361841522002353
Get full text
Author Notes:Holger R. Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto, Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, Dong Yang, Ahmed Harouni, Nicola Rieke, Shishuai Hu, Fabian Isensee, Claire Tang, Qinji Yu, Jan Sölter, Tong Zheng, Vitali Liauchuk, Ziqi Zhou, Jan Hendrik Moltz, Bruno Oliveira, Yong Xia, Klaus H. Maier-Hein, Qikai Li, Andreas Husch, Luyang Zhang, Vassili Kovalev, Li Kang, Alessa Hering, João L. Vilaça, Mona Flores, Daguang Xu, Bradford Wood, Marius George Linguraru

MARC

LEADER 00000caa a2200000 c 4500
001 1832903729
003 DE-627
005 20230706235033.0
007 cr uuu---uuuuu
008 230201s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2022.102605  |2 doi 
035 |a (DE-627)1832903729 
035 |a (DE-599)KXP1832903729 
035 |a (OCoLC)1389535946 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Roth, Holger  |e VerfasserIn  |0 (DE-588)1279730617  |0 (DE-627)1832905713  |4 aut 
245 1 0 |a Rapid artificial intelligence solutions in a pandemic  |b the COVID-19-20 lung CT lesion segmentation challenge  |c Holger R. Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto, Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, Dong Yang, Ahmed Harouni, Nicola Rieke, Shishuai Hu, Fabian Isensee, Claire Tang, Qinji Yu, Jan Sölter, Tong Zheng, Vitali Liauchuk, Ziqi Zhou, Jan Hendrik Moltz, Bruno Oliveira, Yong Xia, Klaus H. Maier-Hein, Qikai Li, Andreas Husch, Luyang Zhang, Vassili Kovalev, Li Kang, Alessa Hering, João L. Vilaça, Mona Flores, Daguang Xu, Bradford Wood, Marius George Linguraru 
264 1 |c [November 2022] 
300 |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 01.02.2023 
520 |a Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. 
650 4 |a Challenge 
650 4 |a COVID-19 
650 4 |a Medical image segmentation 
700 1 |a Isensee, Fabian  |d 1990-  |e VerfasserIn  |0 (DE-588)1207568430  |0 (DE-627)1694044998  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 82(2022) vom: Nov., Artikel-ID 102605  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Rapid artificial intelligence solutions in a pandemic the COVID-19-20 lung CT lesion segmentation challenge 
773 1 8 |g volume:82  |g year:2022  |g month:11  |g elocationid:102605  |a Rapid artificial intelligence solutions in a pandemic the COVID-19-20 lung CT lesion segmentation challenge 
856 4 0 |u https://doi.org/10.1016/j.media.2022.102605  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1361841522002353  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230201 
993 |a Article 
994 |a 2022 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 910000  |d 911400  |e 910000PM1100551875  |e 911400PM1100551875  |k 0/910000/  |k 1/910000/911400/  |p 25 
999 |a KXP-PPN1832903729  |e 4260817078 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"306365081","id":{"issn":["1361-8423"],"eki":["306365081"],"zdb":["1497450-2"]},"origin":[{"publisher":"Elsevier Science","publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1996","dateIssuedDisp":"1996-"}],"disp":"Rapid artificial intelligence solutions in a pandemic the COVID-19-20 lung CT lesion segmentation challengeMedical image analysis","language":["eng"],"titleAlt":[{"title":"Medical image analysis online"}],"pubHistory":["1.1996/97 -"],"note":["Gesehen am 16.05.23"],"part":{"year":"2022","text":"82(2022) vom: Nov., Artikel-ID 102605","volume":"82"},"title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title":"Rapid artificial intelligence solutions in a pandemic","subtitle":"the COVID-19-20 lung CT lesion segmentation challenge","title_sort":"Rapid artificial intelligence solutions in a pandemic"}],"physDesc":[{"noteIll":"Illustrationen, Diagramme"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"id":{"doi":["10.1016/j.media.2022.102605"],"eki":["1832903729"]},"recId":"1832903729","name":{"displayForm":["Holger R. Roth, Ziyue Xu, Carlos Tor-Díez, Ramon Sanchez Jacob, Jonathan Zember, Jose Molto, Wenqi Li, Sheng Xu, Baris Turkbey, Evrim Turkbey, Dong Yang, Ahmed Harouni, Nicola Rieke, Shishuai Hu, Fabian Isensee, Claire Tang, Qinji Yu, Jan Sölter, Tong Zheng, Vitali Liauchuk, Ziqi Zhou, Jan Hendrik Moltz, Bruno Oliveira, Yong Xia, Klaus H. Maier-Hein, Qikai Li, Andreas Husch, Luyang Zhang, Vassili Kovalev, Li Kang, Alessa Hering, João L. Vilaça, Mona Flores, Daguang Xu, Bradford Wood, Marius George Linguraru"]},"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"[November 2022]"}],"language":["eng"],"note":["Gesehen am 01.02.2023"],"person":[{"display":"Roth, Holger","role":"aut","family":"Roth","given":"Holger"},{"given":"Fabian","display":"Isensee, Fabian","role":"aut","family":"Isensee"},{"given":"Klaus H.","display":"Maier-Hein, Klaus H.","role":"aut","family":"Maier-Hein"}]} 
SRT |a ROTHHOLGERRAPIDARTIF2022