Self-supervised anomaly detection for new physics

We investigate a method of model-agnostic anomaly detection through studying jets, collimated sprays of particles produced in high-energy collisions. We train a transformer neural network to encode simulated QCD “event space” dijets into a low-dimensional “latent space” representation. We optimize t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dillon, Barry M. (VerfasserIn) , Mastandrea, Radha (VerfasserIn) , Nachman, Benjamin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 September 2022
In: Physical review
Year: 2022, Jahrgang: 106, Heft: 5, Pages: 1-12
ISSN:2470-0029
DOI:10.1103/PhysRevD.106.056005
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevD.106.056005
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.106.056005
Volltext
Verfasserangaben:Barry M. Dillon, Radha Mastandrea, and Benjamin Nachman

MARC

LEADER 00000caa a2200000 c 4500
001 183370584X
003 DE-627
005 20230706234011.0
007 cr uuu---uuuuu
008 230208s2022 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.106.056005  |2 doi 
035 |a (DE-627)183370584X 
035 |a (DE-599)KXP183370584X 
035 |a (OCoLC)1389535803 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Dillon, Barry M.  |e VerfasserIn  |0 (DE-588)1243203412  |0 (DE-627)1773856952  |4 aut 
245 1 0 |a Self-supervised anomaly detection for new physics  |c Barry M. Dillon, Radha Mastandrea, and Benjamin Nachman 
264 1 |c 8 September 2022 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.02.2023 
520 |a We investigate a method of model-agnostic anomaly detection through studying jets, collimated sprays of particles produced in high-energy collisions. We train a transformer neural network to encode simulated QCD “event space” dijets into a low-dimensional “latent space” representation. We optimize the network using the self-supervised contrastive loss, which encourages the preservation of known physical symmetries of the dijets. We then train a binary classifier to discriminate a beyond the standard model resonant dijet signal from a QCD dijet background both in the event space and the latent space representations. We find the classifier performances on the event and latent spaces to be comparable. We finally perform an anomaly detection search using a weakly supervised bump hunt on the latent space dijets, finding again a comparable performance to a search run on the physical space dijets. This opens the door to using low-dimensional latent representations as a computationally efficient space for resonant anomaly detection in generic particle collision events. 
700 1 |a Mastandrea, Radha  |e VerfasserIn  |0 (DE-588)1280526939  |0 (DE-627)1833782798  |4 aut 
700 1 |a Nachman, Benjamin  |e VerfasserIn  |0 (DE-588)1280527072  |0 (DE-627)1833783190  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 106(2022), 5, Artikel-ID 056005, Seite 1-12  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Self-supervised anomaly detection for new physics 
773 1 8 |g volume:106  |g year:2022  |g number:5  |g elocationid:056005  |g pages:1-12  |g extent:12  |a Self-supervised anomaly detection for new physics 
856 4 0 |u https://doi.org/10.1103/PhysRevD.106.056005  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevD.106.056005  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230208 
993 |a Article 
994 |a 2022 
998 |g 1243203412  |a Dillon, Barry M.  |m 1243203412:Dillon, Barry M.  |d 130000  |d 130300  |e 130000PD1243203412  |e 130300PD1243203412  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN183370584X  |e 4268591435 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Self-supervised anomaly detection for new physics","title":"Self-supervised anomaly detection for new physics"}],"person":[{"given":"Barry M.","family":"Dillon","role":"aut","display":"Dillon, Barry M.","roleDisplay":"VerfasserIn"},{"family":"Mastandrea","given":"Radha","roleDisplay":"VerfasserIn","display":"Mastandrea, Radha","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Nachman, Benjamin","given":"Benjamin","family":"Nachman"}],"note":["Gesehen am 08.02.2023"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"183370584X","origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"8 September 2022"}],"id":{"eki":["183370584X"],"doi":["10.1103/PhysRevD.106.056005"]},"name":{"displayForm":["Barry M. Dillon, Radha Mastandrea, and Benjamin Nachman"]},"physDesc":[{"extent":"12 S."}],"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review"}],"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"volume":"106","text":"106(2022), 5, Artikel-ID 056005, Seite 1-12","extent":"12","year":"2022","issue":"5","pages":"1-12"},"disp":"Self-supervised anomaly detection for new physicsPhysical review","note":["Gesehen am 14.03.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Physical Society","role":"isb"}],"recId":"846313510","origin":[{"publisherPlace":"Ridge, NY","dateIssuedDisp":"2016-","dateIssuedKey":"2016","publisher":"American Physical Society"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"name":{"displayForm":["published by American Physical Society"]},"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a DILLONBARRSELFSUPERV8202