Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian

We shall determine the title groups G up to isomorphism. This solves the problem Nr.861 for p = 2 stated by Y. Berkovich in [2]. The resulting groups will be presented in terms of generators and relations. We begin with the case d(G) = 2 and then we determine such groups for d(G) > 2. In these th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Božikov, Zdravka (VerfasserIn) , Janko, Zvonimir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2010
In: Glasnik matematički
Year: 2010, Jahrgang: 45, Pages: 63-83
ISSN:1846-7989
DOI:10.3336/gm.45.1.06
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3336/gm.45.1.06
Verlag, lizenzpflichtig, Volltext: http://web.math.hr/glasnik/EasyTracker.php?id=45106
Volltext
Verfasserangaben:Zdravka Božikov and Zvonimir Janko

MARC

LEADER 00000caa a2200000 c 4500
001 1835732151
003 DE-627
005 20230710160050.0
007 cr uuu---uuuuu
008 230215s2010 xx |||||o 00| ||eng c
024 7 |a 10.3336/gm.45.1.06  |2 doi 
035 |a (DE-627)1835732151 
035 |a (DE-599)KXP1835732151 
035 |a (OCoLC)1389821642 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Božikov, Zdravka  |d 1949-  |e VerfasserIn  |0 (DE-588)128104329X  |0 (DE-627)1835731538  |4 aut 
245 1 0 |a Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian  |c Zdravka Božikov and Zvonimir Janko 
264 1 |c 2010 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.02.2023 
520 |a We shall determine the title groups G up to isomorphism. This solves the problem Nr.861 for p = 2 stated by Y. Berkovich in [2]. The resulting groups will be presented in terms of generators and relations. We begin with the case d(G) = 2 and then we determine such groups for d(G) > 2. In these theorems we shall also describe all important characteristic subgroups so that it will be clear that groups appearing in distinct theorems are non-isomorphic. Conversely, it is easy to check that all groups given in these theorems possess exactly one maximal subgroup which is neither abelian nor minimal nonabelian. 
700 1 |a Janko, Zvonimir  |d 1932-  |e VerfasserIn  |0 (DE-588)137026056  |0 (DE-627)622563041  |0 (DE-576)320900258  |4 aut 
773 0 8 |i Enthalten in  |t Glasnik matematički  |d Zagreb : Društvo, 1966  |g 45(2010), Seite 63-83  |h Online-Ressource  |w (DE-627)603487432  |w (DE-600)2501667-2  |w (DE-576)308091590  |x 1846-7989  |7 nnas  |a Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian 
773 1 8 |g volume:45  |g year:2010  |g pages:63-83  |g extent:21  |a Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian 
856 4 0 |u https://doi.org/10.3336/gm.45.1.06  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://web.math.hr/glasnik/EasyTracker.php?id=45106  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20230215 
993 |a Article 
994 |a 2010 
998 |g 137026056  |a Janko, Zvonimir  |m 137026056:Janko, Zvonimir  |d 110000  |e 110000PJ137026056  |k 0/110000/  |p 2  |y j 
999 |a KXP-PPN1835732151  |e 4272530046 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 15.02.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1835732151","person":[{"family":"Božikov","given":"Zdravka","display":"Božikov, Zdravka","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Janko","given":"Zvonimir","roleDisplay":"VerfasserIn","display":"Janko, Zvonimir","role":"aut"}],"title":[{"title":"Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian","title_sort":"Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian"}],"physDesc":[{"extent":"21 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["603487432"],"zdb":["2501667-2"],"issn":["1846-7989"]},"origin":[{"publisherPlace":"Zagreb","dateIssuedDisp":"1966-","publisher":"Društvo","dateIssuedKey":"1966"}],"name":{"displayForm":["Hrvatsko Matematičko Društvo"]},"titleAlt":[{"title":"Mathematische Zeitschrift"}],"part":{"pages":"63-83","year":"2010","extent":"21","text":"45(2010), Seite 63-83","volume":"45"},"pubHistory":["1.1966 -"],"recId":"603487432","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Hrvatsko Matematičko Društvo","role":"isb"}],"disp":"Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelianGlasnik matematički","note":["Gesehen am 17.01.25"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"Glasnik matematički","title":"Glasnik matematički"}]}],"name":{"displayForm":["Zdravka Božikov and Zvonimir Janko"]},"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"2010"}],"id":{"doi":["10.3336/gm.45.1.06"],"eki":["1835732151"]}} 
SRT |a BOZIKOVZDRFINITE2GRO2010