Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian
We shall determine the title groups G up to isomorphism. This solves the problem Nr.861 for p = 2 stated by Y. Berkovich in [2]. The resulting groups will be presented in terms of generators and relations. We begin with the case d(G) = 2 and then we determine such groups for d(G) > 2. In these th...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2010
|
| In: |
Glasnik matematički
Year: 2010, Jahrgang: 45, Pages: 63-83 |
| ISSN: | 1846-7989 |
| DOI: | 10.3336/gm.45.1.06 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3336/gm.45.1.06 Verlag, lizenzpflichtig, Volltext: http://web.math.hr/glasnik/EasyTracker.php?id=45106 |
| Verfasserangaben: | Zdravka Božikov and Zvonimir Janko |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1835732151 | ||
| 003 | DE-627 | ||
| 005 | 20230710160050.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 230215s2010 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3336/gm.45.1.06 |2 doi | |
| 035 | |a (DE-627)1835732151 | ||
| 035 | |a (DE-599)KXP1835732151 | ||
| 035 | |a (OCoLC)1389821642 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Božikov, Zdravka |d 1949- |e VerfasserIn |0 (DE-588)128104329X |0 (DE-627)1835731538 |4 aut | |
| 245 | 1 | 0 | |a Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian |c Zdravka Božikov and Zvonimir Janko |
| 264 | 1 | |c 2010 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.02.2023 | ||
| 520 | |a We shall determine the title groups G up to isomorphism. This solves the problem Nr.861 for p = 2 stated by Y. Berkovich in [2]. The resulting groups will be presented in terms of generators and relations. We begin with the case d(G) = 2 and then we determine such groups for d(G) > 2. In these theorems we shall also describe all important characteristic subgroups so that it will be clear that groups appearing in distinct theorems are non-isomorphic. Conversely, it is easy to check that all groups given in these theorems possess exactly one maximal subgroup which is neither abelian nor minimal nonabelian. | ||
| 700 | 1 | |a Janko, Zvonimir |d 1932- |e VerfasserIn |0 (DE-588)137026056 |0 (DE-627)622563041 |0 (DE-576)320900258 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Glasnik matematički |d Zagreb : Društvo, 1966 |g 45(2010), Seite 63-83 |h Online-Ressource |w (DE-627)603487432 |w (DE-600)2501667-2 |w (DE-576)308091590 |x 1846-7989 |7 nnas |a Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian |
| 773 | 1 | 8 | |g volume:45 |g year:2010 |g pages:63-83 |g extent:21 |a Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian |
| 856 | 4 | 0 | |u https://doi.org/10.3336/gm.45.1.06 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u http://web.math.hr/glasnik/EasyTracker.php?id=45106 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20230215 | ||
| 993 | |a Article | ||
| 994 | |a 2010 | ||
| 998 | |g 137026056 |a Janko, Zvonimir |m 137026056:Janko, Zvonimir |d 110000 |e 110000PJ137026056 |k 0/110000/ |p 2 |y j | ||
| 999 | |a KXP-PPN1835732151 |e 4272530046 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 15.02.2023"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1835732151","person":[{"family":"Božikov","given":"Zdravka","display":"Božikov, Zdravka","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Janko","given":"Zvonimir","roleDisplay":"VerfasserIn","display":"Janko, Zvonimir","role":"aut"}],"title":[{"title":"Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian","title_sort":"Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian"}],"physDesc":[{"extent":"21 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["603487432"],"zdb":["2501667-2"],"issn":["1846-7989"]},"origin":[{"publisherPlace":"Zagreb","dateIssuedDisp":"1966-","publisher":"Društvo","dateIssuedKey":"1966"}],"name":{"displayForm":["Hrvatsko Matematičko Društvo"]},"titleAlt":[{"title":"Mathematische Zeitschrift"}],"part":{"pages":"63-83","year":"2010","extent":"21","text":"45(2010), Seite 63-83","volume":"45"},"pubHistory":["1.1966 -"],"recId":"603487432","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"Hrvatsko Matematičko Društvo","role":"isb"}],"disp":"Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelianGlasnik matematički","note":["Gesehen am 17.01.25"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"Glasnik matematički","title":"Glasnik matematički"}]}],"name":{"displayForm":["Zdravka Božikov and Zvonimir Janko"]},"origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"2010"}],"id":{"doi":["10.3336/gm.45.1.06"],"eki":["1835732151"]}} | ||
| SRT | |a BOZIKOVZDRFINITE2GRO2010 | ||