End-to-end deep learning CT image reconstruction for metal artifact reduction

Metal artifacts are common in CT-guided interventions due to the presence of metallic instruments. These artifacts often obscure clinically relevant structures, which can complicate the intervention. In this work, we present a deep learning CT reconstruction called iCTU-Net for the reduction of meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bauer, Dominik F. (VerfasserIn) , Ulrich, Constantin (VerfasserIn) , Russ, Tom (VerfasserIn) , Golla, Alena-Kathrin (VerfasserIn) , Schad, Lothar R. (VerfasserIn) , Zöllner, Frank G. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2022
In: Applied Sciences
Year: 2022, Jahrgang: 12, Heft: 1, Pages: 1-15
ISSN:2076-3417
DOI:10.3390/app12010404
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/app12010404
Verlag, kostenfrei, Volltext: https://www.mdpi.com/2076-3417/12/1/404
Volltext
Verfasserangaben:Dominik F. Bauer, Constantin Ulrich, Tom Russ, Alena-Kathrin Golla and Lothar R. Schad and Frank G. Zöllner

MARC

LEADER 00000caa a2200000 c 4500
001 1836528949
003 DE-627
005 20230706233005.0
007 cr uuu---uuuuu
008 230216s2022 xx |||||o 00| ||eng c
024 7 |a 10.3390/app12010404  |2 doi 
035 |a (DE-627)1836528949 
035 |a (DE-599)KXP1836528949 
035 |a (OCoLC)1389534491 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Bauer, Dominik F.  |d 1993-  |e VerfasserIn  |0 (DE-588)1235085503  |0 (DE-627)1760118532  |4 aut 
245 1 0 |a End-to-end deep learning CT image reconstruction for metal artifact reduction  |c Dominik F. Bauer, Constantin Ulrich, Tom Russ, Alena-Kathrin Golla and Lothar R. Schad and Frank G. Zöllner 
264 1 |c 2022 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 31. Dezember 2021 
500 |a Gesehen am 16.02.2023 
520 |a Metal artifacts are common in CT-guided interventions due to the presence of metallic instruments. These artifacts often obscure clinically relevant structures, which can complicate the intervention. In this work, we present a deep learning CT reconstruction called iCTU-Net for the reduction of metal artifacts. The network emulates the filtering and back projection steps of the classical filtered back projection (FBP). A U-Net is used as post-processing to refine the back projected image. The reconstruction is trained end-to-end, i.e., the inputs of the iCTU-Net are sinograms and the outputs are reconstructed images. The network does not require a predefined back projection operator or the exact X-ray beam geometry. Supervised training is performed on simulated interventional data of the abdomen. For projection data exhibiting severe artifacts, the iCTU-Net achieved reconstructions with SSIM = 0.970±0.009 and PSNR = 40.7±1.6. The best reference method, an image based post-processing network, only achieved SSIM = 0.944±0.024 and PSNR = 39.8±1.9. Since the whole reconstruction process is learned, the network was able to fully utilize the raw data, which benefited from the removal of metal artifacts. The proposed method was the only studied method that could eliminate the metal streak artifacts. 
650 4 |a computed tomography 
650 4 |a deep learning 
650 4 |a image reconstruction 
650 4 |a metal artifacts 
700 1 |a Ulrich, Constantin  |e VerfasserIn  |0 (DE-588)1217877681  |0 (DE-627)173332187X  |4 aut 
700 1 |a Russ, Tom  |d 1992-  |e VerfasserIn  |0 (DE-588)1231738340  |0 (DE-627)175534970X  |4 aut 
700 1 |a Golla, Alena-Kathrin  |d 1991-  |e VerfasserIn  |0 (DE-588)1232099384  |0 (DE-627)1755854447  |4 aut 
700 1 |a Schad, Lothar R.  |d 1956-  |e VerfasserIn  |0 (DE-588)1028817630  |0 (DE-627)731640241  |0 (DE-576)376271221  |4 aut 
700 1 |a Zöllner, Frank G.  |d 1976-  |e VerfasserIn  |0 (DE-588)129580015  |0 (DE-627)473357054  |0 (DE-576)297732587  |4 aut 
773 0 8 |i Enthalten in  |t Applied Sciences  |d Basel : MDPI, 2011  |g 12(2022), 1, Artikel-ID 404, Seite 1-15  |h Online-Ressource  |w (DE-627)737287640  |w (DE-600)2704225-X  |w (DE-576)379466716  |x 2076-3417  |7 nnas  |a End-to-end deep learning CT image reconstruction for metal artifact reduction 
773 1 8 |g volume:12  |g year:2022  |g number:1  |g elocationid:404  |g pages:1-15  |g extent:15  |a End-to-end deep learning CT image reconstruction for metal artifact reduction 
856 4 0 |u https://doi.org/10.3390/app12010404  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2076-3417/12/1/404  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20230216 
993 |a Article 
994 |a 2022 
998 |g 129580015  |a Zöllner, Frank G.  |m 129580015:Zöllner, Frank G.  |d 60000  |d 65200  |e 60000PZ129580015  |e 65200PZ129580015  |k 0/60000/  |k 1/60000/65200/  |p 6  |y j 
998 |g 1028817630  |a Schad, Lothar R.  |m 1028817630:Schad, Lothar R.  |d 60000  |d 65200  |e 60000PS1028817630  |e 65200PS1028817630  |k 0/60000/  |k 1/60000/65200/  |p 5 
998 |g 1232099384  |a Golla, Alena-Kathrin  |m 1232099384:Golla, Alena-Kathrin  |d 60000  |d 65200  |e 60000PG1232099384  |e 65200PG1232099384  |k 0/60000/  |k 1/60000/65200/  |p 4 
998 |g 1231738340  |a Russ, Tom  |m 1231738340:Russ, Tom  |d 60000  |d 65200  |e 60000PR1231738340  |e 65200PR1231738340  |k 0/60000/  |k 1/60000/65200/  |p 3 
998 |g 1217877681  |a Ulrich, Constantin  |m 1217877681:Ulrich, Constantin  |d 130000  |e 130000PU1217877681  |k 0/130000/  |p 2 
998 |g 1235085503  |a Bauer, Dominik F.  |m 1235085503:Bauer, Dominik F.  |d 60000  |d 65200  |e 60000PB1235085503  |e 65200PB1235085503  |k 0/60000/  |k 1/60000/65200/  |p 1  |x j 
999 |a KXP-PPN1836528949  |e 4272923633 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"End-to-end deep learning CT image reconstruction for metal artifact reduction","title_sort":"End-to-end deep learning CT image reconstruction for metal artifact reduction"}],"note":["Online veröffentlicht: 31. Dezember 2021","Gesehen am 16.02.2023"],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"given":"Dominik F.","role":"aut","family":"Bauer","display":"Bauer, Dominik F."},{"role":"aut","given":"Constantin","family":"Ulrich","display":"Ulrich, Constantin"},{"given":"Tom","role":"aut","family":"Russ","display":"Russ, Tom"},{"display":"Golla, Alena-Kathrin","role":"aut","given":"Alena-Kathrin","family":"Golla"},{"display":"Schad, Lothar R.","family":"Schad","role":"aut","given":"Lothar R."},{"given":"Frank G.","role":"aut","family":"Zöllner","display":"Zöllner, Frank G."}],"relHost":[{"disp":"End-to-end deep learning CT image reconstruction for metal artifact reductionApplied Sciences","physDesc":[{"extent":"Online-Ressource"}],"recId":"737287640","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 19.02.13"],"id":{"zdb":["2704225-X"],"issn":["2076-3417"],"eki":["737287640"]},"title":[{"title_sort":"Applied Sciences","title":"Applied Sciences","subtitle":"open access journal"}],"part":{"volume":"12","year":"2022","issue":"1","extent":"15","text":"12(2022), 1, Artikel-ID 404, Seite 1-15","pages":"1-15"},"origin":[{"dateIssuedKey":"2011","dateIssuedDisp":"2011-","publisherPlace":"Basel","publisher":"MDPI"}],"pubHistory":["1.2011 -"]}],"origin":[{"dateIssuedDisp":"2022","dateIssuedKey":"2022"}],"recId":"1836528949","physDesc":[{"extent":"15 S."}],"id":{"doi":["10.3390/app12010404"],"eki":["1836528949"]},"name":{"displayForm":["Dominik F. Bauer, Constantin Ulrich, Tom Russ, Alena-Kathrin Golla and Lothar R. Schad and Frank G. Zöllner"]}} 
SRT |a BAUERDOMINENDTOENDDE2022